Change of language, change of content

From now on this blog is about my adventures in bioinformatics and in the use of open source software:
The code is bash, perl, R -especially sweave/noweb-, LaTeX and my lovely, beastly OS editor`s (Gnu-Emacs) elisp.

I will publish code snippets and short comments in English language. You con read about the same and my other more biology focussed interests in German on Alles was lebt.
Posts mit dem Label mammals werden angezeigt. Alle Posts anzeigen
Posts mit dem Label mammals werden angezeigt. Alle Posts anzeigen

Samstag, 31. Januar 2009

Ein phylogenetischer Kuchen und die Paraphylie der Reptilien

Britische Supermärkte weisen eine geringe Biodiversität auf, was Fruchtgummi-Invertebraten betrifft. Daher waren wir gezwungen einen sehr vertebraten-lastigen phylogenetischen Kuchen zum Geburtstag unseres Prof's zu backen, obwohl sich dessen Interessen eher auf Invertebraten (diese Gruppe ist übrigens auch paraphyletisch) fokussieren. Genauer gesagt gehören die meisten terminalen Taxa unseres Nachtisches zu einer Gruppe, die gemeinhin als Kriechtiere (Reptilien) bezeichnet wird.

Folgendes Kladogramm gibt korrekte Verwandtschaftsverhältnisse wieder:



Für alle mit etwas eingerosteten Fruchtgummitier-Kenntnissen, die terminalen Taxa von links nach rechts:
Vogel(Hühner-Ei: Gallus gallus), Saurier (Tyrannosaurus rex), Alligator, nicht näher bestimmte Schlange (Serpentes), Maus (Mus), Bär(Ursus), Hai, (Carcharodon), Rundwürmer (Nematoda), Plattwurm (Platyhelminthes) und Nautilus.

Schön zu erkennen ist auf dem Kuchen, dass in der Gruppe, die wir allgemein als Reptilien kennen, gefiederte Dinosaurier enthalten sind: Die Vögel.
Daher bezeichnet der althergebrachte Name "Kriechtiere/Reptilien" eine sogenannte paraphyletische Gruppe, die näherungsweise alle nicht gefiederten Sauropsida umfasst.

Zum weitern Kladogramm:
Die Sauropsida bilden zusammen mit den Säugetieren eine Schwestergruppe der Knorpelfische (vertreten durch den Hai). Interessant hierbei ist, dass hätten wir einen Knochenfisch (Teleostei) mit eingeschlossen, dieser zu der Gruppe der Vertebraten mit Knochen (Teleostomi) gehört hätte. Beispielsweise ein Goldfisch ist also näher mit uns Primaten verwandt als mit einem Hai.
Die vertretenen Wirbellosen gehören zu den Protostomiern und teilen sich in Ecdysozoa und Lophotrochozoa, wobei bei letzteren auf unserem Kuchen die Plattwürmer von den Mollusken zu unterscheiden sind.

P.S.
Im Moment geht meine zurzeit sehr spannende Arbeit vor, daher werden die nächsten zeitaufwendigen Popgen-Posts noch etwas auf sich warten lassen.

Samstag, 27. September 2008

Vergleichende Entwicklungsgenomik- Zwei Paper und massig Fehlinterpretationen

ResearchBlogging.org In diesem Post möchte ich anhand zweier Papern diskutieren, was Evo-Devo im allgemeinen ist und eine Unterdisziplin, die man im Deutschen wohl am besten "Vergleichende Entwicklungsgenomik" nennt, vorstellen. Außerdem möchte ich zeigen, warum Arbeiten auf diesem Gebiet für unser Verständnis der Evolutionstheorie wichtig sind. Zum Schluss möchte ich noch einen verwandten Beitrag auf dem deutschen Researchblogging kritisieren und zeigen warum dieser Fehlinterpretationen und schlichte Fehlinformation enthält.

Evo-Devo (Evolutionary developmental biology) lässt sich am besten mit "Evolutionäre Entwicklungsbiologie" ins Deutsche übersetzen. Der Forschungszweig basiert darauf, dass natürliche Selektion oft nicht unmittelbar auf den Genotyp eines Individuums wirken kann, sondern auf den Phänotyp. Dieser Phänotyp wird durch ein komplexes genetisches Programm bei der Entwicklung des Organismus produziert. Bei einem solchen Entwicklungsprogramm sind die Mengen an Proteinen oder RNAs entscheidend; so können gewisse Schwellenwerte dieser Moleküle Zellschicksale beeinflussen und den Phänotyp bestimmen.
Eines der grundsätzlichsten Dogmen von Evo-Devo ist daher, dass Unterschiede in der Genexpression während der Entwicklung für unterschiedliche Phänotypen verantwortlich sind. Diese Expressionsunterschiede wiederum werden durch Unterschiede in nicht kodierenden, den Genen vorgelagerten (cis-)regulatorischen Sequenzen (hauptsächlich Promotoren und Enhancer) oder in den Protein-Sequenzen von übergeordneten Transkriptionsfaktoren verursacht (oder wiederum in der Expression dieser Transkriptionsfaktoren).
Evo-Devo will daher in die bisweilen postulierte Lücke zwischen Macro- und Microevolution vorstoßen. Gerade Experten auf dem Gebiet der Entwicklungsbiologie räumen mitunter die Möglichkeiten saltatorischer Evolution ein. Das heißt, sie halten Makromutationen für möglich, die in einem einzigen Mutationsschritt starke Änderungen des Phänotyps (sogenannte "Hopeful Monster") produzieren. Dies soll hauptsächlich durch Änderungen an wichtigen "Schaltstellen"-Transkriptinsfaktoren in den Entwicklungsprogrammen geschehen. Diese Sichtweise wird von der Mehrzahl der Evolutionsbiologen -bis auf Darwin selbst zurückgehend- abgelehnt. Die konventionelle Theorie besagt, dass Veränderungen durch graduelle Mutationen erfolgen, die sich über Generationen akkumulieren. Einzelne Wissenschaftler auf dem Gebiet der evolutionären Entwicklungsbiologie versuchen also mitunter Modifikationen an den bestehenden Fundamenten der Evolutionsbiolgie zu erreichen, was auf heftige Kritik (auch aus den eigenen Reihen) stößt. Wahrscheinlich ist Evo-Devo daher eines der lebendigsten Forschungsgebiete in der aktuellen Biologie.

Die von mir im Folgenden besprochenen Studie untersuchen beide dieses zentrale Dogma von Evo-Devo genauer und lassen meines Erachtens auch Schlüsse zur genannten Kontroverse zu.

Cretekos et al. benutzen dazu die Unterschiede im Wachstum der Vorderextremitäten zwischen Carollia perspicillata (einer Fledermaus) und der Maus. Beide Taxa stammen aus unterschiedlichen Ordnungen der Säugetiere Chiroptera (=Fledertiere) beziehungsweise Rodentia (=Nagetiere), teilen also einen gemeinsamen Vorfahren vor etwa 80-100 Millionen Jahren.
Die Studie betrachtet Veränderungen in Prx1, einem Transkriptionsfaktor, der durch klassische entwicklungsbiologische Methoden als wichtig in der Extremitätenentwicklung identifiziert wurde. Die Kollegen stellten beim Verglich der Gen-Sequenzen aus Maus und Fledermaus nur einen nicht-synonymen (in das Protein übersetzten)Unterscheid fest. Dieser Unterschied befindet sich in einem Bereich des Genes, der ohnehin wenig konserviert ist, und nicht mit der typischen Funktion des Traskriptionsfaktors in Verbindung gebracht wird.
Unterschiede in der Expression von Prx1 konnten in der späten Entwicklung der Vorderextremitäten festgestellt werden, in der Fledermaus war der Transkriptionsfaktor speziell im Bereich der Handwurzelknochen stärker exprimiert. Dieses Ergebnis korreliert gut mit dem zu diesem Zeitpunkt verstärkt auftretenden Längenwachstum in der Fledermaus.
Cretekos et al. betrachteten weiterhin also einen Enhancer "stromaufwärts" des Gens, der ebenfalls mit klassischen Methoden identifiziert worden war. Dieser Enhancer enthält zwei Bereiche die zwischen Nager und Fledertier relativ konserviert sind, in diesen wurde dann die Funktion vermutet. Um dies zu testen konnte die Gruppe die jeweilige Enhancer-Region an ein Reportegen koppeln und in Mäuse einbringen, dabei wurde stärkere Reporter-expression beim Chiroptera-Enhancer beobachtet.
Doch damit nicht genug, der Gruppe gelang es schließlich das Fledermaus-Kontrollelement in die Maus einzubringen, so dass es die Expression des Prx1-Gens steuert. Die entsprechenden Mäuse zeigten tatsächlich ein verstärktes Wachstum der Vorderextremitäten.
Die Studie konnte so eindrucksvoll das zentrale Dogma der evolutionären Entwicklungsbiologie bestätigen und weiterhin zeigen, dass die zugrunde liegenden Veränderungen im untersuchten Fall auf Enhancer-Elementen basieren.

Auch die Studie von Prabhakar et al. beschäftigt sich mit der Funktion von Enhancern, die betreffende genomische Region war aber mit anderen Mitteln identifiziert worden. Dabei wurden komplett sequenzierten Genome von Wirbeltieren nach konservierten, nichtkodierenden Sequenzen durchsucht. Aus diesen Sequenze wurden wiederum jene identifiziert, die in der Menschlichen Linie (entgegen des allgemeinen Trends) evolvieren. Diese Vorgehen basiert auf der Tatsache, dass Elemente mit einer bestimmten Funktion weniger evolvieren als funktionslose Elemente, ändern sie allerdings ihre Funktion erfolgt die Evolution sogar schneller als dies unter Neutralität (Funktionslosigkeit) der Fall wären. Die identifizierte Region liegt im Intron eines Gens, das mit der Funktion des Endosoms in Verbindung gebracht wird. Weier "stromäbwärts" befindet sich wieder ein Transkriptionsfaktor, dessen Wirkung die Entwicklung der Gliedmaßen beeinflusst. Die Expression welcher Gene genau der mögliche Enhancer beeinflusst ist also noch nicht geklärt.
Zur Untersuchung der Funktion der Enhancer-Region benutzten die Kollegen also wieder ein Reporterassay (ß-Galactosidase). Sie brachten die postulierten Kontrollelemente aus Rhesusaffen (Macaca mulatta), Schimpansen (Pan troglodytes) und dem Menschen (Homo sapiens) (Divergenz vor 6 bzw. 25 Mya) gekoppelt an das Reportergen, in Mäuse ein. So konnten die Forscher zeigen, dass die menschlichen Elemente im Vergleich zu denen aus beiden anderen Primaten, verstärkt Gene beim Wachstum der Extremitäten anschalten. Sie konnten so die durch den Genom-Verglich identifizierten Unterschiede bestätigen: Der Zustand und die Wirkung des Enhancers sind sich in nicht-menschlichen Affen ähnlich und entsprechen daher wahrscheinlich dem Zustand im gemeinsamen Vorfahren.
Mit sehr cleveren Experimenten bewiesen die Kollegen, dass genau die 13 Basen Unterschied im Menschen im Vergleich zu Schimpanse und Rhesusaffe den Unterschied ausmachen. Sie konstruierten Fragmente aus den beiden "Vierbeinern" in denen nur die betroffenen 13 Unterschiede eingebracht waren. Diese Konstrukte hatten die gleiche Wirkung wie das original-menschliche Element.

Die Studie konnte so, aufbauend auf dem zuvor beschriebenen zentralen Dogma von Evo-Devo, zeigen, dass durch Genomvergleiche die betreffenden Elemente identifiziert werden können. Ein denkbarer Name für ein solches Vorgehen ist "Vergleichende Entwiklungsgenomik" oder im Englischen "Comparative developmental genomics".

Weiter demonstrieren beide Studien eindrucksvoll die evolutionären Möglichkeiten für graduelle Veränderungen in Entwicklungsprogrammen. In beiden Beispielen konnte durch Veränderung einzelner Basen in regulativen Bereichen Unterschiede in der Genexpression erzeugt werden. Da es sich um Variationen in einzelnen Basenpaaren (SNPs) handelt, die langsam und nacheinander ins Genom einfließen, verlangen die hier beobachteten Unterschiede geradezu nach Gradualismus.

Fee hat vor einigen Wochen auf dem Blog Science-meets-spciety ebenfall über das letztere Paper geschrieben und ich möchte einige Fehler in diesem (auch auf Researchblogging erschienenen) Post abschließend korrigieren. Ich hoffe so eine Diskussion anzuregen, falls es im deutschsprachigen Raum genügend Interesse gibt.

S-M-S:
Wir teilen bis zu 98% der codierenden DNA mit unseren nächsten Verwandten, den Schimpansen (Pan troglodytes) und doch unterscheiden wir uns markant von ihnen.

Das stimmt nicht! Eine der grundlegendsten Entdeckungen der letzten Jahre waren Unterschiede in der Kopienzahl einzelner Gene im Menschlichen Genom. 2007 wurde so (Hauptsächlich durch den Vergleich der Genome von Venter und Watson) offensichtlich, dass einzelne Menschen sich in 2-3% ihres Genoms unterscheiden. Der Unterschied zu unseren nächsten interspeziefschen Verwandten dürfe daher mindestens 5% betragen.

S-M-S:
Der größte Teil der DNA in menschlichen Zellen ist nicht kodierend und wurde, als man dies entdeckte, fälschlicherweise als Junk-DNA (Abfall-DNA) verschrien.

Diese Sichtweise ist grundsätzlich falsch! Es wurden seit der Entdeckung nicht-kodierender Bereiche schon versucht Funktionen für diese für eine höhere Organisation zu postulieren. Vergleicht man aber unterschiedliche Organismen (z.B. der Zwiebel oder des Salamanders) mit der des Menschen oder der Kugelfische (Tetraodontidae; anderes Extrem) fällt schnell auf dass eine höhere Komplexität nicht mit der Genomgröße korreliert.
Die in Frage stehenden regulatorischen Elemente machen einen winzigen Teil des Genoms aus.

S-M-S:
Dabei stiessen sie auf einen Abschnitt von 546 Basenpaaren Länge, der sich seit der Entwicklung der Wirbeltiere nur wenig verändert hatte. Jedoch hatten sich in der relativ kurzen Zeit von 6 Millionen Jahren, seit sich die Entwicklungszweige von Mensch und Schimanse trennten, 16 Veränderungen etabliert, die alle in einem Abschnitt von 81 Basenpaaren clusterten. So etwas ist für einen genetischen Detektiv ein eindeutiges Indiz, dass weitere Untersuchungen gewinnbringend sein könnten.

Die Forscher wussten im Gegensatz zum Schreiber dieser Zeilen um die Existenz von Enhancen. Andernfalls hätten sie den entsprechenden Bereich nicht als solchen identifizieren können. In der besprochenen Studie wurden nicht zum ersten Mal Selektion auf einen nicht-kodierenden Bereich nachgewiesen. Ähnliche Fehlinterpretationen und die übertriebene Darstellung von Neuheiten (wissenschaftlichen Revolutionen) in der Wissenschaftsberichterstattung veranlassen auch beispielsweise Kreationisten regelmäßig zu ähnlichen Dummheiten.

S-M-S:
[...]so aktivierten alle die Expression von Genen in den Augen, Ohren und in den embryonalen Kiemenbögen, die später den Kiefer bilden.

Die Expression eines Reportergens! Dies ist im Vergleich zu den anderen Fehlern aber eher zweitrangig.

S-M-S:
Ein neuer Teilbereich der entwicklungsgenetischen Forschung, der bestimmt noch viele Überraschungen und neue Erkenntnisse birg.

Quatsch! "Vergleichende Entwicklungsgenomik" ist zwar ein recht neuer boomender Bereich der Entwicklunsbiologie, erfunden wurde er aber in diesem Paper nicht. Die Studie bestätigt vielmehr experimentell die Validität der zugrundeliegenden in silico Analysen.


Ich hab hier mal die jährliche Zähl an Veröffentlichungen, die "Comparative developmental genomics" im Volltext (Pub-med) erwähnen geplotet:


Dabei fällt auf, dass das erste Paper bereits aus dem Jahre 1988 stammt, als eigentlich noch keine Genome zum Vergleich bereitstanden. Veröffentlichungen vor dem Jahre 2001 können also wahrscheinlich als "Hintergrundrauschen" oder "Vorahnung" interpretiert werden, wirkliche "Comparative genomics" in dem heute etablierten Sinn waren damals noch kaum möglich. Ab diesem Zeitpunkt wurden dann anhand der vorhandenen Daten die betreffenden Methoden entwickelt. Prabhakar et al. haben also zwar eine schöne Studie angefertigt, mitnichten aber das "Teilgebiet" erfunden.

Kommentare/ Kritik erwünscht, ich bin kein Entwicklungsbiologe und habe sicher selbst Fehler gemacht!

________________________________________________________________________________________________________________

C. J. Cretekos, Y. Wang, E. D. Green, J. F. Martin, J. J. Rasweiler, R. R. Behringer (2008). Regulatory divergence modifies limb length between mammals Genes & Development, 22 (2), 141-151 DOI: 10.1101/gad.1620408

S. Prabhakar, A. Visel, J. A. Akiyama, M. Shoukry, K. D. Lewis, A. Holt, I. Plajzer-Frick, H. Morrison, D. R. FitzPatrick, V. Afzal, L. A. Pennacchio, E. M. Rubin, J. P. Noonan (2008). Human-Specific Gain of Function in a Developmental Enhancer Science, 321 (5894), 1346-1350 DOI: 10.1126/science.1159974

Montag, 23. Juni 2008

Vergleichbarkeit von Orthologen bei Primaten und Nagern

ResearchBlogging.orgSoooooo, es ist also endlich Zeit für meinen ersten Post. Meine recht willkürliche Wahl viel auf ein Paper aus dem Bereich der Genomik. Dem Titel meines Blog werde ich wahrscheinlich erst in einigen Monaten gerecht werden und mehr über Populationsgenetik schreiben...
Ich habe versucht sämtliche Fachausdrücke (außer "Knockout", das war mir dann doch zu blöd) ins Deutsche zu übersetzen, obwohl ich befürchte, dass dies die Verständlichkeit nicht unbedingt verbessert. Aber urteilt selbst!

In den nächsten Jahren wird die verfügbare Sequenzinformation von Nicht-Modellorganismen dank der neuen Generation von Sequenzier-Geräten sprunghaft zunehmen. Um die Flut an Daten, die diese Maschinen produzieren, zu ordnen ist allerdings das Wissen, das über Modelorganismen gewonnen wurde, von entscheidender Bedeutung. Ein sehr wichtiger Schritt der Analyse von Sequenzdaten (über die vorausgehenden Schritte werde ich sicher noch in einigen Posts berichten, wenn ich endlich mal selbst an solchen Daten sitze) ist die Annotation von Genen. Dabei werden sehr unterschiedliche Methoden (über diese auch sicher in anderen Posts mehr) eingesetzt um vorauszusagen, wie die vorliegende Sequenz in ein Protein übersetzt wird: Man muss z.B. bestimmen in welchem Leserahmen übersetzt wird, was trotz teilweise vorhandener Sequenzierfehler möglichst robust geschehen sollte. Findet man orthologe Gene, z. B. aus einem schon komplett sequenzierten Modellorganismus, hat das aber über die simple Annotation hinaus (die sehr erleichtert wird) noch andere Vorteile: Man kann Schlüsse über die Funktion und Wichtigkeit (Wesentlichkeit) des entdeckten Gens aus dem Wissen über das Orthologe im Modellorganismus ziehen.
Für die Wichtigkeit eines Gens ist dessen "Wesentlichkeit" (= direkte Übersetzung des englischen "essentiality") ein eindeutiges Maß. Wesentliche (=essentielle) Gene sind dabei solche, die bei einer Nullmutation die Reproduktion des Trägers ausschließen (= seine Fitness auf 0 reduziert).

Doch wie gut sind Voraussagen anhand von Orthologen über den Effekt von Genen auf die Fitness? Wie schnell und häufig ändern Gene ihre Wesentlichkeit und ihre Funktion?

Um Veränderungen der Wesentlichkeit zu beleuchten analysierten Ben-Yang Liao und Jianzhi Zhang, in einer im März in PNAS veröffentlichten Studie, die Überlebenswichtigkeit von Gene zweier sehr gut erforschter Säugetiere; des Menschen und der Maus. Deren letzter gemeinsamer Vorfahre lebte vor etwa 87 Millionen Jahren (Mya) und beide unterscheiden sich, obwohl wir einige menschliche Merkmale als stark abgeleitet wahrnehmen, in evolutionärem Maßstab nur marginal.
Die Studie nutz die Vorteile des riesigen Wissens über beide Organismen um 120 Gene zu identifizieren, die beim Menschen durch eine Nullmutation Krankheiten verursachen, die vor Erreichen der Fortpflanzungsfähigkeit zu Tod führen, oder unfruchtbar machen, und für die ein Phänotyp beim Knock-out in der Maus beobachtet wurde.

Für 27 der 120 identifizierten Gene ist überraschenderweise der Phänotyp beim Maus-Knockout nicht mit einem Totalverlust der Fitness verbunden.
Übernehmen Paraloge in der Maus die Funktion des entsprechenden Gens? Bei den identifizierten Genen handelt es sich um eins-zu-eins Orthologe, Genduplikation in einer der beiden zur Maus oder zum Menschen führenden Linien ist also ausgeschlossen. Die Funktion des entsprechenden Gens könnte aber von einem Paralogen übernommen werden, das schon im gemeinsamen Vorfahren vorhanden war. Um dies zu testen verglichen die beiden Forscher (1.) die Gruppe der Gene die für Mensch und Maus wesentlich sind mit (2.) der Gruppe von Genen, die nur für den Menschen, nicht für die Maus essentiell sind: Der Anteil der Gene mit Paralogen und die durchschnittliche Ähnlichkeit mit dem nächsten Paralogen unterscheiden sich in beiden Gruppen nicht. Zusammen mit früheren Studien der selben Autoren, die generell das Vorkommen einer Kompensation der Genfunktion durch Paraloge in Säugetieren selten und unwahrscheinlich erscheinen lassen, kann man Kompensation durch Paraloge also im vorliegenden Fall nahezu ausschließen.

Weiter fanden Liao und Zhang eine verstärkte Selektion auf eine Veränderung der Proteinsequenz (zwischen Maus und Mensch) in der zweiten Gruppe verglichen mit der ersten: Sie verglichen die Anzahl der synonymen und nichtsynonymen ausgetauschten Basen (= synonyme und nichtsynonyme Distanz; dS und dN) in diesen Gruppen und einer weiteren (3.) Gruppe von Genen, die für die Maus nicht wesentlich sind, ungeachtet dessen, ob sie für den Menschen essentiell sind.
Die nichtsynonyme Distanz ist für die 2. Gruppe größer als für die erste, während die synonyme Distanz gleich ist. Die Proteinsequenz ist also bei den Genen mit veränderter Wesentlichkeit unterschiedlicher als bei Genen die gleich essentiell sind.
Dies könnte zwei Ursachen haben: Positive Selektion auf eine veränderte Funktion, oder eine schwächere negative Selektion durch die veränderte Wesentlichkeit. Um zwischen diesen beiden Möglichkeiten (bei denen jeweils Ursache und Wirkung vertauscht sind) zu unterscheiden verglichen die Forscher die nichtsynonyme Distanz der 2. mit der 3. Gruppe (die die zweite Gruppe, plus für Maus und Menschen nicht essentielle Gene enthält): Dass die Distanz zwischen der zweiten Gruppen nicht kleiner sondern größer ist als zwischen der dritten Gruppe interpretierten sie als Indiz dafür, dass man nicht von einer abgeschwächten negativen Selektion auf die 2. Gruppe ausgehen kann (diese musste in der dritten Gruppe noch schwächer sein).
Verringerte negative Selektion auf nicht essentielle Gene als Grund für den Unterschied zwischen dN(1.) und dN(2.) ist also unwahrscheinlich.

Weiter konnten die Autoren Orthologe der Gene der zweiten Gruppe aus zwei vollständig sequenzierten Primatenarten (Schimpanse und Makake) und einer weiteren Nagerart, der Ratte zur Analyse heranziehen. Sie nutzen dazu eine Methode um positive Selektion aufzuspüren: Sie verglichen das Verhältnis von nichtsynonymen zu synonymen Distanzen (dN/dS) für die 27 Gene entlang des phylogenetischen Baums. Die meisten (17) Gene hatten dabei das höchste dN/dS-Verhältnis zwischen den Primatenarten. Die meisten nichtsynonymen Polymorphismen sind also erst in den Hominidae (Menschenaffen) entstanden.Zu dN/dS-Verhältnissen wird es hier sicher noch einige Posts geben, doch was macht außerdem die Ergebnisse diese Papers nun so interessant?

Zum einen gibt es für medizinisch motivierte Studien an Mausmodellen Zweifel an der Übertragbarkeit der Ergebnisse. Ein großer Teil der Proteine der Gene der 2. Gruppe ist in der Vakuole lokalisiert und wurden möglicherweise durch die Evolution einer längeren Lebenszeit der Menschenaffen speziell in Neuronen essentiell. Besonders für neurologische Krankheiten könnten Nager also suboptimale Modelle sein.

In anderen Organismen könnten möglicherweise Voraussagen über die Wichtigkeit eines Gens nur sehr eingeschränkt möglich sein. Dies ist natürlich besonders bedauerlich, wenn man mit einem Organismus arbeitet, dessen letzter gemeinsamer Vorfahre mit einem Modellorganismus (= Verfügbarkeit von Knockout-Phänotypen) vor etwa 400 Mya gelebt hat. Mich würde natürlich in diesem Zusammenhang interessieren, wie oft z.B. bei C. elegans und C. briggsae (100 Mya) unterschiedliche Knockout-Phänotypen beobachtet werden.

Ich hab eben bemerkt, dass auf Nimravid’s Weblog das Paper schon dikutiert wurde.

________________________________________________________________________________________________________________

B.-Y. Liao, J. Zhang (2008). Null mutations in human and mouse orthologs frequently result in different phenotypes Proceedings of the National Academy of Sciences, 105 (19), 6987-6992 DOI: 10.1073/pnas.0800387105