Change of language, change of content

From now on this blog is about my adventures in bioinformatics and in the use of open source software:
The code is bash, perl, R -especially sweave/noweb-, LaTeX and my lovely, beastly OS editor`s (Gnu-Emacs) elisp.

I will publish code snippets and short comments in English language. You con read about the same and my other more biology focussed interests in German on Alles was lebt.
Posts mit dem Label BENEFICIAL werden angezeigt. Alle Posts anzeigen
Posts mit dem Label BENEFICIAL werden angezeigt. Alle Posts anzeigen

Dienstag, 20. Januar 2009

Protein-Polymorphismus und die neutrale Theorie

ResearchBlogging.orgWie ich in früheren Posts bereits angedeutet habe, wurde in der Zeit bevor man schnell und günstig DNA sequenzieren konnte hauptsächlich eine auf Verschiedenheiten in Enzymen basierende Methode verwendet um Variabilität innerhalb von Populationen zu untersuchen. Masatoshi Nei und Dan Graur haben zu den so gewonnenen Daten, eine sehr fundierte und gut zu lesende Metaanalyse durchgeführt; sozusagen das letzte Wort zu diesen Daten in der Populationsgenetik...

Sogenannte Allo(en)zyme katalysieren sehr grundlegende Stoffwechselprozesse und sind daher hoch konserviert, d.h in fast allen Lebewesen sind Orthologe vorhanden. Zerkleinert man gesamte Organismen, und lässt den entstehenden "Brei" in einem elektrischen Feld durch eine Gel laufen (Gelelektrophorese) trennen sich die Proteine, wie die interessierenden Enzyme, gemäß ihrer Ladung auf. Die dazu verwendeten Stärkegele werden dann mit dem Substrat für eines der Allozyme und einem Farbstoff, der ausfällt, wenn die entsprechende Reaktion stattfindet, gefärbt. Mit dieser Methode sind in dem meisten Organismen etwas mehr als 20 Enzyme analysierbar.
Auf den ersten Blick erscheinen diese evolutionär konservierten Moleküle aber nicht besonders geeignet um Unterschiede innerhalb einer Art auf Populationsebene zu untersuchen. Eine erstaunliche Entdeckung war daher, dass solche Enzyme innerhalb einer Art oft in unterschiedlichen Allelen vorkommen, sichtbar als unterschiedliche weit gelaufene Banden im Gel.
Seit Anfang der 1960 resultierte dies in einer Fülle von Studien, die diese Methode zur Anwendung brachten und für experimentell arbeitende Populationsgenetiker "find it, grind it" zur Losung machten.

Die Entwicklung der neutralen Theorie ist daher auch im Licht der so gewonnenen Daten zu sehen. Warum gibt es diese Variabilität in natürlichen Populationen? Wer seine Fliegen mit etwas Hintergrundwissen zerrieb, musste eine neutrale Erklärung in Betracht ziehen.

Schon vor der Untersuchung dieser ersten molekularen Polymorphismen war der Grad der innerhalb einer Art beobachteten Variabilität das beherrschende Thema der Populationsgenetik. Warum kommt es durch Selektion nicht zu einer vollständigen Optimierung des Phänotypes und damit zu einem Verschwinden der Variabilität?

Es können zwei Gruppen von Hypothesen getestet werden, die dieses Phänomen erklären könnten:

Zum Ersten die neutrale Erklärung: Es könnte einfach keine Selektion auf die interessierenden Merkmale gegeben sein und daher könnten zwei Allele durch Zufall zum gegebenen Zeitpunkt vorhanden sein.

Zum Anderen "selektionistische" Erklärungen, d.h. Selektion selbst könnte zwei unterschiedlich Merkmale begünstigen. Dies wird "balancing selection" genannt. Ein Paradebeispiel hierfür stellt Häufigkeits-abhängige Selektion dar. Spezielle Merkmale werden positiv selektiert weil sie selten sind, wird das entsprechende Allel häufiger, verschwindet dieser Vorteil und das alternative Allel hat den Vorteil. Der große Polymorphismus bei MHC Allelen lässt sich so beispielsweise sehr schlüssig mit Häufigkeits-abhängiger Selektion erklären.
Eine weitere "selektionistische" Erklärung wäre "Overdominance", dabei haben Heterozygote eine größere Fitness als die beiden möglichen Homozygoten, daher hält die Selektion beide Allele in der Population.

Betrachtet man die Theorien ohne jegliche Daten, muss man feststellen, dass die neutrale Erklärung die sparsamere und daher -falls sie ausreicht- bessere ist. Die auf Selektion basierenden Erklärungen sind etwas umständlicher wurden aber von vielen Biologen bevorzugt, da man neutrale Erklärungen oft als unschön empfand. Die selektionistischen Erklärungen wurden als "darwinistisch" verteidigt, neutrale Erklärungen schienen für viele in Widerspruch mit "Darwins Theorie" zu stehen. Wie sollte eine hauptsächlich neutrale Variabilität das "Substrat" für die allgemeine akzeptierte Evolution durch natürliche Selektion liefern?

Natürlich waren auch die Vertreter der neutralen Erklärungsversuche (wie Lewontin) im weiteren Sinne "Darwinisten", sie vertraten meist die Auffassung, dass selbst der in ihren Modellen unbedeutende kleine Teil der selektierten Merkmale ausreiche um "darwinistische" Evolution zu ermöglichen.

Eine weitere Warnung ist bei der Diskussion über sie neutrale Theorie angebracht:
Sie betrachtet speziell molekulare Polymorphismen. Grundlage dafür ist die Annahme, dass negativ selektierte Allele so schnell den Extremzustand "Verlust des Alles aus der Population" anstreben, dass sie zu vernachlässigen sind. Es ist nach diesen Annahmen einfach unwahrscheinlich, dass man gerade in dem kurzen Moment, in dem ein selektierter Locus in der Population polymorph ist die Daten erhebt. (Würde mann nur innerhalb der Population einer Art arbeiten könnte man in der neutralen Theorie auch ohne weiteres positive Selektion zulassen, schließlich würde das gleiche schnelle "Anstreben des Extremzustandes", diesmal der Fixierung auch für positive selektierte Allele zutreffen, die neutrale Theorie kann positive Selektion aber nicht zulassen, da sie auch einen Zusammenhang zwischen der Sequenz-Divergenz zwischen Arten und der Zeit seit der Divergenz vorhersagt, darauf werde ich noch eingehen).

Und eine weiter Warnung, dass die Theorie auf molekularer Ebene anzuwenden ist: Würde man phänotypische Merkmale, die zum Großteil von mehreren Genen kontrolliert werden, betrachten, müsste man auch Effekte der (nicht vollständigen) Erblichkeit dieser Merkmale und Interaktion mehrerer Loci bei ihrere Erzeugung mit einbeziehen. Solche Aspekte sind nicht Teil der neutralen Theorie, sondern der quantitativen Genetik.

Nach dieser langen Einleitung zurück zum besprochenen Paper. Nei und Graur untersuchten also ob der beobachtete Grad des Polymorphismus, der in Allozym-Studien als Heterozygotie (=Gendiversität; H) für einen Locus angegeben wird, den Voraussagen der neutralen Theorie entspricht. Sie wählten dafür Daten für 341 Spezies aus 77 Studien, in denen die Heterozygotie für mindestens 10 individuelle Genomen an 20 Protein-Loci ermittelt wurden.

Die Voraussagen der neutralen Theorie sind nun folgende:
  1. Die beobachtete mittlere Heterozygotie (über alle Loci) nimmt mit steigender Populationsgröße zu.
  2. Die beobachtete mittlere Heterozygotie ist gleich oder kleiner als der durch Formel [8] gegebene Erwartungswert.

Die effektive Populationsgröße (Ne) in Formel [8] muss man durch die Populationsgröße (N) ersetzen, da Ne nicht direkt messbar oder schätzbar ist.

Die erste Aussage basiert auf einer angenommenen Korrelation von Ne und N, diese reicht aus um nicht nur für Ne sondern auch für N eine positive Regression mit der Heterozygotie vorauszusagen.
Anders bei der zweiten Aussage: Das "oder kleiner" resultiert daraus, dass die effektive Populationsgröße (Ne) jeweils kleiner oder gleich der aktuellen Populationsgröße (N) ist. Muss man nun also Ne durch N ersetzen, ergibt die Formel keinen exakten Erwartungswert, sondern erlaubt nur das genannte "kleiner gleich".

Für alle 77 in die Analyse einbezogenen Studien mussten Nei und Graur nun also die Populationsgröße der jeweils zugrunde liegenden 341 Spezies abschätzen. Sie beschreiben für einzelne Spezies genau wie sie dies anstellten: Mit viel Sachverstand und Pedanterie...

Die erste Voraussage bewahrheitete sich im analysierten Datensatz oder wie die beiden Autoren etwas wissenschaftlicher schreiben: "Die erste neutrale Null-Hypothese konnte nicht abgelehnt werden". Die Regression von Populationsgröße (N) und Heterozygotie (H) war signifikant und der Regressionskoeffizient r = 0.65 sagt, dass 65% der Varianz in H oder N durch Covarianz von H und N erklärbar ist. Eine erstaunlich gute Regression, bedenkt man, dass N nur eine Schätzung und obendrein ein Ersatz für Ne ist.

Die zweite Aussage machte etwas mehr Probleme: Für zwei der 341 Spezies musste "diese Nullhypothese zunächst abgelehnt werden", sie zeigten signifikant höhere Diversität als vorausgesagt.
Die Ausreißer waren Drosophila engyochracea und D. mimica, hawaiianische Fruchtfliegen-Arten.

Für diese drei Spezies testeten die beiden Autoren alternative Hypothesen. Sie nahmen dazu die Verteilung der Allelfrequenzen genauer unter die Lupe. Diese entspricht in den zwei Spezies der unter Neutralität angenommenen Verteilung. De Facto erwartet man bei einer auf Overdominance basierenden Alternativhypothesen nicht die beobachtete Verteilung: In dieser sind die meiste Loci nicht polymorph und die Allelfrequenzen der polymorphen Loci gleichmäßig zwischen 0 und 1 verteilt (U-Form der Verteilung). Ovedrdominance wurde eine Clustern der Frequenzen um 0.5 produzieren.

In einer ausführlichen Diskussion stellen Nei und Graur dann dar warum eine heterogene Umwelt mit vielen verschiedenen Nischen nicht in der Lage ist über Adaptation an einzelne Nischen Variabilität zu erzeugen. Kurz gesagt lassen dies Genfluss, mendelsche Vererbung und finite Populationsgrößen in realistischen Modellen nicht zu.

Aus dem selben Grund aus dem die neutrale Theorie vorteilhafte Mutationen ignorieren kann, können sie auch nicht für den beobachteten Polymorphismus verantwortlich sein: Sie werden zu schnell fixiert. Dies mag zunächst wie ein Zirkelschluss erscheinen, allerdings sagen alle plausiblen Modelle für eine Fixierung von positiv selektierten Allelen eine extrem schnelle Fixierung voraus.
Würde man extrem kleine Selektionsvorteile und hohe Mutationsraten annehmen, könnte man zwar die beobachtete Variabilität erreichen, solche Prozesse würden dann aber zwischen Arten zu hohe Substitutionsraten ergeben. Substitution ist die Fixierung eines neuen Allels, wie sei nach einer Divergenz zweier Arten beobachtet wird. Da solche Substitutionsraten für phylogenetischen Studien benutzt werden, sind sie bekannt und man weiss, dass sie über den gesamten "Baum des Lebendigen" in der gleichen Größenordnung liegen.

Die beiden Autoren schließen, dass eine neutrale Erklärung auch für die beiden Ausreißer in Betracht kommt, da spezielle für diese Arten die Abschätzung der Populationsgröße sehr schwierig war und möglicherweise N schlicht unterschätzt wurde, was dann zu zu niedrigen Werten für die erwartete Diversität erbrachte.
Die Daten scheinen also mit der neutralen Theorie der molekularen Evolution gut übereinzustimmen.

Zu den Problemen der Neutralen Theorie komme ich erst im nächsten Post. Würde ich auf Englisch schreibe, hätte ich dafür auch schon einen Titel:
"The mean is not the message: The overdispersion of the molecular clock".
_____________________________________________________________________________________________________________________________________________________________
Masatoshi Nei, Dan Graur (1984). Extent of protein polymorphism and the neutral mutation theory Evolutionary biology Link(kein DOI zu finden)

Sonntag, 30. November 2008

Die nahezu neutrale Theorie der molekularen Evolution

Eine elegante Erweiterung der neutralen Theorie haben Kimura und Ohta in den späten 1980ern entwickelt. Sie haben folgende die Gleichung für die Fixierungswahrscheinlichkeit von Mutationen, die schwach selektiert werden gefunden:

[9]

s ist dabei der sogenannte Selektionskoeffizient relativ zur durchschnittlichen Fitness. In dem zugrunde liegenden Modell hat das in der Population bereits vorhandene Allel die Fitness 1, Homozygote für die neue Mutation haben die Fitness 1+s, Heterozygote 1+s/2.
Folgendes Schaubild zeigt den Einfluss der Populationsgröße auf die Effektivität der Selektion. Der Selektionskoeffizient s ist dabei von -0.02 (2% schlechtere Fitness/Fortpflanzungswahrscheinlichkeit der Homozygoten für die Mutation, 1% der Heterozygoten ) bis 0,01 (1% besseres Abschneiden der Homozygoten, 0,5 der Heterozygoten) aufgetragen.


{2}

Deutlich wird, dass in grösseren Populationen die Selektion wirksamer ist. Nes sollte um die Formel interessant zu machen in der Nähe von 1 liegen, der von mir angenommene Selektionskoeffizient von -0.02 bis 0.01ist vergleichsweise groß und daher gibt die Formel für eher kleine Werte von N interessante Graphen. In realistischeren Situationen wird die Formel wohl eher bei um einige Zehnerpotenzen größeren Populationen angewandt deren Selektionskoeffizient um einige Zehnerpotenzen kleiner sind.
Schön zu sehen ist auch dass die Formel "im Limit" (s=0) die gleichen Werte gibt wie Formel [1].

Die R-Befehle gibt es hier als googledoc. Einfach in eine Textdatei einfügen.
Das ganze als deinscript.R speichern. In R erzeugt das script mit source("deinpfad/deinscript.R") den Plot dieses Posts mit dem Namen nearlyneutralauto.jpg in dem Ordner in dem du R gestartet hast.

Die neutrale Theorie der molekularen Evolution, Teil 2

Vielleicht ist es jemandem aufgefallen: Die Teilaspekte der neutrale Theorie, die ich im ersten Post vorgestellt hatte erlauben nicht unbedingt viele Voraussagen und wären zu Kimuras Zeit, vor Entwicklung der DNA-Sequenzierung, in dieser Form untestbar gewesen.

Wie ich bereits angedeutet habe hat die Theorie auch einen mathematisch etwas schwierigen Teil: Formel, die von Kimura aus Diffusionsgleichungen ableitete, da Mutationen ähnlich diesem physikalischen Prinzip in die Population "diffundieren". Für die durchschnittliche Zeit zwischen dem entstehen der Mutation und ihrer Fixierung konnte er 4Ne Generationen ermitteln.
Mutationen, die zum verschwinden verurteilt sind tun dies dagegen im Durchschnitt innerhalb von

[6]

Generationen.
Mutationen die verloren gehen tun dies als in wesentlich kürzerer Zeit, als solche die fixiert werden.

Nehmen wir nen weiter ein Modell mit unendlich vielen verschiedenen möglichen Allelen an, gibt

[7]

die erwartete Homozygotie unter Neutralität in einem Gleichgewichtszustand von Mutation und Verlust der Mutationen durch Drift. u ist dabei die wieder die neutrale Mutationsrate. Die Formel hat eine schöne Herleitung auf die ich in späteren Posts zurückkommen werde, da dafür noch weitere Konzepte erklärt werden müssen.
Homozygotie beschreit den Zustand eines Locus (Genort) an dem nur eine Allel in der Population vorhanden ist. Dieser "Zustand" ist heute erkennbar indem man den betreffenden Locus für genügend Individuen der Population sequenziert, diese Technik war allerdings erst seit den achtziger Jahren verfügbar und auch bis in die neunziger für eine breite Anwendung noch zu teuer und arbeitsaufwändig.
Man hat nun bereits zu Kimuras Zeit festgestellt, dass diese Voraussagen über Homozygotität für anhand von Allozym -Polymorphismen gewonnenen Daten nicht immer mit der Realität übereinstimmen. Allozyme waren in der Zeit nach der Entwicklung der Populationsgenetik lange Zeit das einzige Werkzeug um Einblicke in die Genetik jenseits von morphologischen, diskreten Merkmalen, wie sie Mendel benutzt hatte, zu erlangen. Ich sollte ihnen einen eigenen Post widmen...

Für die meisten Daten wird aus historischen Gründen, die wir noch kennen lernen werden, eher die die Heterozygotie als die Homozygotie angegeben. Da jeder Lokus entweder im einen oder im anderen Zustand vorliegt, ist der Zusammenhang zwischen beiden Messwerten aber ein einfacher: Die Heterozygotie (H) ist 1- die Homozygotie. Deshalb ist die einfache Umformung von Formel [7]:

[8]

Im nächsten Post werde ich zunächst auf die nahezu neutrale Version der Theorie eingehen, dann sind die Grundlagen vorhanden um einige Veröffentlichungen -auch aktuelle- zu besprechen.

Samstag, 29. November 2008

Grundlagen: Effektive Populationsgröße

Wie wir im ersten Post über die neutrale Theorie gesehen haben spielt bei Zufallsprozessen, wie genetischem Drift (der zufälligen Fixierung bestimmter Allele) , die Populationsgröße eine Rolle. Wir haben für diesen ersten Teil dieser Theorie lediglich die aktuelle Populationsgroesse N betrachtet, diese kann man "einfach" durch "zählen" der betreffenden Individuen der Population bestimmen. Dies funktioniert leider nur auf Kosten mehrerer Voraussetzungen, wie gleichbleibender Populationsgröße und zufälliger Paarung.
Wollen wir unsere Modelle nun aber auf realistischere Systeme anwenden, brauchen wir das Konzept der effektiven Populationsgröße(Ne).

Viele Population haben beispielsweise eine ungleiche Anzahl sich fortpflanzender Männchen und Weibchen. Dies ist bei starker männlicher Konkurrenz um die Weibchen der Fall, wo sich in jeder Generation nur ein Bruchteil der Männchen fortpflanzen.
In diesem Fall ist

[3]

Wobei Nm die Anzahl der sich fortpflanzenden Männchen, Nf die Anzahl der sich fortpflanzenden Weibchen ist.
Spielt man etwas mit dieser Formel, wir beim Einsetzen von Werten sehr schnell deutlich, dass wenn Nm sehr viel größer als Nf der Wert für Ne eher in der Nähe des kleinen Wertes liegt. Dies macht Sinn, da durch die wenigen sich paarenden Männchen in jeder neuen Generation eine Art Flaschenhals ensteht: Die Hälfte der autosomal weitergegebenen Allele wird durch einen kleinen Bruchteil der Individuen weitergegeben.

Ähnliches gilt aus den gleichen Gründen, wenn sich einzelne Individuen -unabhängig vom Geschlecht- sehr unterschiedliche Nachkommenzahlen haben, dann ist

[4]

wobei Vk die Varianz in der Nachkommenzahl ist. Da bei gleichbleibender Populationsgröße (bisher immer noch eine Ausgangsannahme) durchschnittlich zwei Nachkommen pro Elternteil entstehen, ist die Nachkommenanzahl bei zufälliger Fortpflanzung Poisson-verteilt mit einem Mittelwert und einer Varianz von 2. Größere Varianzen lassen in obiger Formel Ne kleiner als N werden.

Doch was passiert wenn sich die Populationsgröße über die Zeit ändert? Ganz einfach

[5]

d.h. Ne ist das harmonische Mittel der Populationsgrößen in n Generationen.

Ähnliche Gleichungen für die effektiven Populationsgrößen kann man auch für andere Abweichungen wie überlappende Generationen finden. In der Regel ist dabei die effektiven Populationsgröße kleiner als die aktuelle Populationsgröße.

Ausgerüstet mit diesem Handwerkszeug können wir uns nun Problemen widmen, die weniger strenge Annahmen verlangen.

Mittwoch, 26. November 2008

Die neutrale Theorie der molekularen Evolution

Meine erstes Thema wird die Ausbreitung von Mutationen innerhalb einer finiten Population sein.

Motoo Kimura entwickelte seine Theorie dazu in den 1960er bis 1980er Jahren ausgehend von Anwendungen von Diffusions Approximationen auf genetische Fragestellungen, an denen zuvor R.A.Fisher und S. Wright gearbeitet hatten. Die Herleitung der Formeln übersteigt dabei mein mathematisches Verständnis. Die Theorie (und ihre nahezu neutrale Erweiterung) ist aber eine der elegantesten in der Biologie und daher auch intuitiv verständlich.
Ich versuche deshalb nur ihre Grundzüge ohne Anspruch auf Vollständigkeit darzustellen, zu zeigen welche Annahmen benötigt werden und welche Vorhersagen dies erlaubt. Bewusst wähle ich diesen Ansatz mit einer der mathematisch komplexesten Theorien zu starten (in den folgenden Posts kann es also nur einfacher werden) und werde später bei mathematisch einfacheren Theorien mehr auf Herleitung und Entwicklung der Formeln eingehen.

Hauptsächlich interessiert mich im aktuellen Post die Fixierungswahrschheinichkeit eines Allels (Ausprägungszustand eines Gens), oder spezieller einer neuen Mutation. Fixierung bedeutet hierbei, dass in der Population ausschließlich das betreffende Allel vorkommt. Der Verlust des Alles oder dessen Fixierung stellen Extremzustände da, die sich in einer vereinfachten Darstellung untersuchen lassen.
Hartl und Clark benutzen das Beispiel einer Bouling-Bahn in der die seitlichen Rinnen Analoga dieser Extremzustände sind. Nimmt man nun an, dass die -analog zur Zeit- unendlich lange Bahn -analog zu möglichen Zufallsereignissen- nicht perfekt eben ist- wird offensichtlich, dass jedes Allel über kurz oder lang einen dieser Extremzustände erreicht.
Wichtig ist lediglich die Breite der Bahn oder ihr biologisches Analogon, die Populationsgröße.

Wir nehmen eine diploide Population mit N Individuen an, in dieser sind 2N Kopie des interessierenden Gens vorhanden und es werden 2N Gameten für die nächste Generation gewählt , die dann wieder N Zygoten bilden (=gleichbleibende Populationsgröße und zufällige Paarung). Die Fixierunswahrscheinlickeit eines Alles ist nun gegeben durch seine aktuelle Frequenz p0/Anzahl der Kopien. Im Falle einer neuen Mutation, die per Definition nur einmal vorhanden ist

[1]

Das macht Intuitiv Sinn, da jedes Gen einen Fixierungszustand ansteuert und zum Startzeitpunkt eben 2N Alternativen gegeben sind.


{1}

Betrachtet man die aus dieser Formel resultierende Fixierungswahrscheinlichkeit für eine Mutation als Funktion der Populationsgröße wird deutlich, dass diese Wahrscheinlichkeit selbst für eine moderate Populationsgröße nicht besonders groß ist. Sie ist allerdings auch nicht 0 für große Populationen (z.B. N=1,000,000-> p= 0,0000005)

u ist die Mutationsrate mit der irgendwo im interessierenden Abschnitt des Genoms eine Mutation entsteht. Neutralität kann man nun für einen ganzen Abschnitt des Genoms, wie z.B. ein Pseudogen, annehmen oder für spezielle Mutationen, wie z.B. jene von degernerierte Basen an der dritten Stelle eines Kodons (= synonyme Mutationen).
Die Rate u, mit der die Mutationen entstehen ist nun erstaunlicherweise gleich der Rate mit der neutrale Mutationen fixiert werden K. Sie ist unabhängig von der Populationsgröße, da in großen Populationen auch mehr Mutationen entstehen.

[2]

d.h. die kleinere Fixierungswahrscheinlichkeit und die Populationsgröße heben sich gegenseitig auf. Ein Zusammenhang von mathematisch schlichter Schönheit.
Die durchschnittliche Zeit zwischen zwei Fixierungen ist dann logischerweise 1/u.

Dieses Modell passt logischerweise nicht immer zu den beobachteten Daten und ist daher sehr hilfreich als Nullhypothese um Neutralität zu testen. Es ist allerdings falsch aus abweichenden Beobachtungen auf Nicht-Neutralität zu schließen, da auch andere Voraussetzungen wie beispielsweise die gleichbleibende Populationsgröße verletzt sein können.

Folgerungen aus der neutralen Theorie der molekularen Evolution tauchen in zukünftigen Post wieder auf. In diesen werde ich näher auf den Einfluss von Selektion und damit auf die nahezu neutrale Version der Theorie eingehen, finite Populationsgrößen näher beleuchten und Zusammenhänge von Polymorphismus und Divergenz aufzeigen.

Dienstag, 25. November 2008

Populationsgenetik, Now!

Meine Serie

Dies ist ein Beitrag in einer Reihe von Posts zu Populations- und quantitativer Genetik. Es gibt im deutschsprachigen Raum meines Wissens kein Lehrbuch zu diesem Thema. Dies ist wohl eine der Folgen des zu niedrigen Stellenwertes der Evolutionsbiologie an deutschen Hochschulen, wie ihn auch der VBIO beklagt.
Eine anderer möglicher Grund für die fehlende "quantitative Tradition" in der deutschen Evolutionsbiologie ist vielleicht auch, dass der bekannteste deutschsprachige Vertreter dieser Disziplin, Ernst Mayr nicht mit mathematischen Modellen arbeitete.

Die Posts dieser Reihe werde ich hauptsächlich mit Hilfe der Bücher "Principles of population genetics" von Daniel L Hartl und Andrew G. Clark, "Quantitative genetics" von Douglas S. Falconer und Trudy F.C. Mackay schreiben. Außerdem habe ich in den letzten Monaten eine Vorlesung bei Brian Charlsworth und Peter Keightley besucht, die Skripte und Aufzeichnungen aus diesen werde ich ebenfalls konsultieren.
Trotzdem werden die Posts natürlich nur einen winzigen Einblick in das große Feld verschaffen und sicher auch Fehler enthalten.



Warum sollte man sich gerade jetzt mit Populationgenetik beschäftigen?

In einem interessanten Post auf dem Fischblog beschreibt Godwael den großen zu erwartenden Erkenntnisgewinn aus der Sequenzierung hunderter kompletter menschlicher Genome. Dabei ist mir aufgefallen, dass die theoretischen Grundlagen der Populationsgenetik im deutschsprachigen Raum wohl eher unbekannt sind.

Wie breiten sich Mutationen aus? Wie ausgeprägt sind die Einflüsse von Migration, Drift und Selektion? All diese Fragestellungen müssen nicht anhand der an kompletten Genomsequenzen gewonnenen Daten untersucht werden, sondern es existiert eine unglaubliche Fülle an Modellen, die das das Zusammenspiel dieser Faktoren testen. Natürlich ist nicht auszuschließen, dass auch neue Modele entwickelt werden müssen, das Gros der neu gewonnenen Daten passt aber zu den bestehenden Erklärungsansätzen.

Welchen Nutzen ziehen Evolutionsbiologen also aus den neu gewonnenen Genom-Daten?
Einer der Hauptnutzen besteht darin, dass sie die Suche nach den am besten passenden Modellen für bislang ununtersuchte Genombereiche erlauben. Evolviert ein Bereich des Genoms dann anders als man es unter einem bestimmten Modell erwarten würde, ist die Verwendung eines anderen Modells mit veränderten Ausgangs-Annahmen nötig. Hat man dann ein Modell gefunden das die Daten anhand der der sparsamsten Parameter (Occam's Razor) bestmöglich beschreibt generiert dies wiederum neue Hypothesen.
Beispielsweise könnte es notwendig werden über historisch noch unbekannte Migrationsbewegungen menschlicher Populationen nachzudenken oder Selektion auf einen Bereich des Genoms in Betracht zu ziehen der zuvor als neutral galt. Je nachdem was die Modelle nahelegen können so beispielsweise Hypothesen für Historiker, Zellbiologen oder Biochemiker generiert werden. Die Fähigkeit der entsprechenden Wissenschaftler diese Implikationen der Evolutionsbiologie für ihr Forschungsfeld zu verstehen wird in einigen Beriechen sicher Entdeckungen fördern. Es ist also für viele Wissenschaftler ratsam sich in nächster Zeit etwas mit theoretischer Evolutionsbiologie zu beschäftigen.

Samstag, 27. September 2008

The Tuesday Nematode

Mit Gnathostoma spinigerum präsentiere ich heute zum ersten Mal in der "weekly Nematode"-Serie (ich sollte die Serie vielleicht mit etwas understatement in "The annual Nematode" umbenennen) einen spirurinen Nematoden. Spiruina bildet eine Schwestergruppe der Tylenchina (die beiden letzen Nematoden der Woche) und Rhabditina (meist freilebend; z.B. C. elegans). Diese Klade (Spirurina wird häufig auch einfach "Clade 3" genannt) wude erstmals 1998 entdeckt und umfasst die beiden früher auf Ordnungs-Ebene geführten Kladen Spirurida in Ascaridida.

Besonders interessant ist die Gattung Gnathostoma tatsächlich durch ihre phylogenetische Position. Da ich zurzeizeit Hilfe von einem Diplomanden habe, der sich um die Phylogeny der Gattung Anguillicola und um eine bessere Auflösung des Baums für die basalen Spirurina kümmern soll, gibt es hier eine Neuheit- einen Gastpost "meines" Diplomanden Dominik Laetsch:

Grund für unser Interesse an der Gattung Gnathostoma ist also -wie gesagt- zum einen die geringe phylogenetische Distanz der SSU-rDNA-Sequenz dieses Nematoden zu jener unseres "Lieblings-Wurms" Anguillicola crassus und die Tatsache, dass die Familien Gnathostomatidae und Aguillicolidae aufgrund jener Daten den basalen Zweig der Spirurina darzustellen scheinen [1], [2]. Bestimmte Vertreter der Gattung Gnathostoma werden uns daher auch als "Out-group" in der phylogenetischen Analyse des Genus Anguillicola dienen (was das Thema meiner Diplomarbeit darstellt).
Der Genus Gnathostoma gliedert sich in ca. 9 mehr oder weniger gut von einander abgegrenzten Arten, welche wie alle Spirurina parasitisch leben. Davon sind mindestens drei als humanpathogene Arten beschrieben: G. turgidum, G. doloresi und G. spinigerum. Der Lebenszyklus von G. spinigerum ist bekannt und umfasst die Entwicklung der L1-Larve zum, für den Endwirt infektiösen, dritten Larvenstadium in zwei aquatischen Zwischenwirten (Copepoden des Genus Cyclops bzw. Fische/ Amphibia/ Mollusca) und die anschliessende Entwicklung zum Adultus im Endwirt (Mammalia; oft Feliden, Caniden und Suiden). Paratenische Wirte stellen vor allem Fische und Vögel dar. Im Endwirt durchbohrt G. spinigerum nach der oralen Aufnahme infizierten Gewebes die Magenwand und bereist als Larva migrans für die nächsten 3 Monate dessen Gewebe und innere Organ bis er zurückkehrt und sich an die mucosale Magenwand heftet. Dort entwickelt er sich für weitere 6 Monate bis er beginnt unembryonierter Eier zu produzieren, welche durch mit dem Kot ausgeschieden werden. Im Wasser embryonieren diese Eier, und mit der Azfnahme durch den ersten Zwischenwirt ist der Kreislauf geschlossen.
Das klinische Bild wird unter dem Begriff Gnathostomiasis [3] zusammengefasst und kann sowohl bei Feliden, Caniden als auch Hominiden letal verlaufen. Erstmals beschrieben wurde dieses Krankheitsbild 1835 anhand eines Kadavers eines jungen Tigers des Londoner Zoos. In Menschen entwickelt sich G. spinigerum nicht zum Adultus sondern migriert durch das Körpergewebe für bis zu 10- 12 Jahre, wobei zwischen kutaner und viszeraler Larva migrans unterschieden wird. Ersteres beschreibt nur Hautexzesse, bedingt durch mechanische Zerstörung des Gewebes und Produktion von Proteasen, Hyaluronidasen und Hemolysin durch den Parasiten, sowie durch die Immunreaktion des Wirtes. Letzteres umfasst die selben Faktoren jedoch in Organen wie der Leber und dem ZNS. Diese Scäden führen zu einer Mortalität von 8-25 % der betrofenen Patienten. Desweiteren gibt es drei dokumentierte Fälle von intrauteriner Transmission.
Bis auf Thailand, wo sie die häufigste parasitäre Erkrankung des ZNS darstellt, ist sie jedoch selbst in ihren endemischen Gebieten (Japan, Korea, Laos, Malaysia, Taiwan, Thailand, Mexico, Ecuador) relativ selten.

FAZIT: ein gewiefter Parasit der nur mittels serologischem Test und Biopsien nachgewiesen werden kann. Vorsicht ist geboten bei "zu frischem" Fisch, dreckigem Wasser (Copepoden) und nicht garem Geflügel.

References:
[1] S. A. NADLER, R. A. CARRENO, H. MEJÍA-MADRID, J. ULLBERG, C. PAGAN, R. HOUSTON and J.-P. HUGOT (2007). Molecular phylogeny of clade III nematodes reveals multiple origins of tissue parasitism. Parasitology, 134 , pp 1421-1442
doi:10.1017/S0031182007002880

[2] Martina Wijova, Frantisek Moravec, Ales Horak, Julius Lukes, Evolutionary relationships of Spirurina (Nematoda: Chromadorea: Rhabditida) with special emphasis on dracunculoid nematodes inferred from SSU rRNA gene sequences, International Journal for Parasitology Volume 36, Issue 9, , August 2006, Pages 1067-1075.
doi:10.1017/S0031182007002880

[3] Moore DAJ, McCrodden J, DeKumyoy P, Chiodini PL. Gnathostomiasis: an emerging imported disease. Emerg Infect Dis [serial online] 2003 Jun

Vergleichende Entwicklungsgenomik- Zwei Paper und massig Fehlinterpretationen

ResearchBlogging.org In diesem Post möchte ich anhand zweier Papern diskutieren, was Evo-Devo im allgemeinen ist und eine Unterdisziplin, die man im Deutschen wohl am besten "Vergleichende Entwicklungsgenomik" nennt, vorstellen. Außerdem möchte ich zeigen, warum Arbeiten auf diesem Gebiet für unser Verständnis der Evolutionstheorie wichtig sind. Zum Schluss möchte ich noch einen verwandten Beitrag auf dem deutschen Researchblogging kritisieren und zeigen warum dieser Fehlinterpretationen und schlichte Fehlinformation enthält.

Evo-Devo (Evolutionary developmental biology) lässt sich am besten mit "Evolutionäre Entwicklungsbiologie" ins Deutsche übersetzen. Der Forschungszweig basiert darauf, dass natürliche Selektion oft nicht unmittelbar auf den Genotyp eines Individuums wirken kann, sondern auf den Phänotyp. Dieser Phänotyp wird durch ein komplexes genetisches Programm bei der Entwicklung des Organismus produziert. Bei einem solchen Entwicklungsprogramm sind die Mengen an Proteinen oder RNAs entscheidend; so können gewisse Schwellenwerte dieser Moleküle Zellschicksale beeinflussen und den Phänotyp bestimmen.
Eines der grundsätzlichsten Dogmen von Evo-Devo ist daher, dass Unterschiede in der Genexpression während der Entwicklung für unterschiedliche Phänotypen verantwortlich sind. Diese Expressionsunterschiede wiederum werden durch Unterschiede in nicht kodierenden, den Genen vorgelagerten (cis-)regulatorischen Sequenzen (hauptsächlich Promotoren und Enhancer) oder in den Protein-Sequenzen von übergeordneten Transkriptionsfaktoren verursacht (oder wiederum in der Expression dieser Transkriptionsfaktoren).
Evo-Devo will daher in die bisweilen postulierte Lücke zwischen Macro- und Microevolution vorstoßen. Gerade Experten auf dem Gebiet der Entwicklungsbiologie räumen mitunter die Möglichkeiten saltatorischer Evolution ein. Das heißt, sie halten Makromutationen für möglich, die in einem einzigen Mutationsschritt starke Änderungen des Phänotyps (sogenannte "Hopeful Monster") produzieren. Dies soll hauptsächlich durch Änderungen an wichtigen "Schaltstellen"-Transkriptinsfaktoren in den Entwicklungsprogrammen geschehen. Diese Sichtweise wird von der Mehrzahl der Evolutionsbiologen -bis auf Darwin selbst zurückgehend- abgelehnt. Die konventionelle Theorie besagt, dass Veränderungen durch graduelle Mutationen erfolgen, die sich über Generationen akkumulieren. Einzelne Wissenschaftler auf dem Gebiet der evolutionären Entwicklungsbiologie versuchen also mitunter Modifikationen an den bestehenden Fundamenten der Evolutionsbiolgie zu erreichen, was auf heftige Kritik (auch aus den eigenen Reihen) stößt. Wahrscheinlich ist Evo-Devo daher eines der lebendigsten Forschungsgebiete in der aktuellen Biologie.

Die von mir im Folgenden besprochenen Studie untersuchen beide dieses zentrale Dogma von Evo-Devo genauer und lassen meines Erachtens auch Schlüsse zur genannten Kontroverse zu.

Cretekos et al. benutzen dazu die Unterschiede im Wachstum der Vorderextremitäten zwischen Carollia perspicillata (einer Fledermaus) und der Maus. Beide Taxa stammen aus unterschiedlichen Ordnungen der Säugetiere Chiroptera (=Fledertiere) beziehungsweise Rodentia (=Nagetiere), teilen also einen gemeinsamen Vorfahren vor etwa 80-100 Millionen Jahren.
Die Studie betrachtet Veränderungen in Prx1, einem Transkriptionsfaktor, der durch klassische entwicklungsbiologische Methoden als wichtig in der Extremitätenentwicklung identifiziert wurde. Die Kollegen stellten beim Verglich der Gen-Sequenzen aus Maus und Fledermaus nur einen nicht-synonymen (in das Protein übersetzten)Unterscheid fest. Dieser Unterschied befindet sich in einem Bereich des Genes, der ohnehin wenig konserviert ist, und nicht mit der typischen Funktion des Traskriptionsfaktors in Verbindung gebracht wird.
Unterschiede in der Expression von Prx1 konnten in der späten Entwicklung der Vorderextremitäten festgestellt werden, in der Fledermaus war der Transkriptionsfaktor speziell im Bereich der Handwurzelknochen stärker exprimiert. Dieses Ergebnis korreliert gut mit dem zu diesem Zeitpunkt verstärkt auftretenden Längenwachstum in der Fledermaus.
Cretekos et al. betrachteten weiterhin also einen Enhancer "stromaufwärts" des Gens, der ebenfalls mit klassischen Methoden identifiziert worden war. Dieser Enhancer enthält zwei Bereiche die zwischen Nager und Fledertier relativ konserviert sind, in diesen wurde dann die Funktion vermutet. Um dies zu testen konnte die Gruppe die jeweilige Enhancer-Region an ein Reportegen koppeln und in Mäuse einbringen, dabei wurde stärkere Reporter-expression beim Chiroptera-Enhancer beobachtet.
Doch damit nicht genug, der Gruppe gelang es schließlich das Fledermaus-Kontrollelement in die Maus einzubringen, so dass es die Expression des Prx1-Gens steuert. Die entsprechenden Mäuse zeigten tatsächlich ein verstärktes Wachstum der Vorderextremitäten.
Die Studie konnte so eindrucksvoll das zentrale Dogma der evolutionären Entwicklungsbiologie bestätigen und weiterhin zeigen, dass die zugrunde liegenden Veränderungen im untersuchten Fall auf Enhancer-Elementen basieren.

Auch die Studie von Prabhakar et al. beschäftigt sich mit der Funktion von Enhancern, die betreffende genomische Region war aber mit anderen Mitteln identifiziert worden. Dabei wurden komplett sequenzierten Genome von Wirbeltieren nach konservierten, nichtkodierenden Sequenzen durchsucht. Aus diesen Sequenze wurden wiederum jene identifiziert, die in der Menschlichen Linie (entgegen des allgemeinen Trends) evolvieren. Diese Vorgehen basiert auf der Tatsache, dass Elemente mit einer bestimmten Funktion weniger evolvieren als funktionslose Elemente, ändern sie allerdings ihre Funktion erfolgt die Evolution sogar schneller als dies unter Neutralität (Funktionslosigkeit) der Fall wären. Die identifizierte Region liegt im Intron eines Gens, das mit der Funktion des Endosoms in Verbindung gebracht wird. Weier "stromäbwärts" befindet sich wieder ein Transkriptionsfaktor, dessen Wirkung die Entwicklung der Gliedmaßen beeinflusst. Die Expression welcher Gene genau der mögliche Enhancer beeinflusst ist also noch nicht geklärt.
Zur Untersuchung der Funktion der Enhancer-Region benutzten die Kollegen also wieder ein Reporterassay (ß-Galactosidase). Sie brachten die postulierten Kontrollelemente aus Rhesusaffen (Macaca mulatta), Schimpansen (Pan troglodytes) und dem Menschen (Homo sapiens) (Divergenz vor 6 bzw. 25 Mya) gekoppelt an das Reportergen, in Mäuse ein. So konnten die Forscher zeigen, dass die menschlichen Elemente im Vergleich zu denen aus beiden anderen Primaten, verstärkt Gene beim Wachstum der Extremitäten anschalten. Sie konnten so die durch den Genom-Verglich identifizierten Unterschiede bestätigen: Der Zustand und die Wirkung des Enhancers sind sich in nicht-menschlichen Affen ähnlich und entsprechen daher wahrscheinlich dem Zustand im gemeinsamen Vorfahren.
Mit sehr cleveren Experimenten bewiesen die Kollegen, dass genau die 13 Basen Unterschied im Menschen im Vergleich zu Schimpanse und Rhesusaffe den Unterschied ausmachen. Sie konstruierten Fragmente aus den beiden "Vierbeinern" in denen nur die betroffenen 13 Unterschiede eingebracht waren. Diese Konstrukte hatten die gleiche Wirkung wie das original-menschliche Element.

Die Studie konnte so, aufbauend auf dem zuvor beschriebenen zentralen Dogma von Evo-Devo, zeigen, dass durch Genomvergleiche die betreffenden Elemente identifiziert werden können. Ein denkbarer Name für ein solches Vorgehen ist "Vergleichende Entwiklungsgenomik" oder im Englischen "Comparative developmental genomics".

Weiter demonstrieren beide Studien eindrucksvoll die evolutionären Möglichkeiten für graduelle Veränderungen in Entwicklungsprogrammen. In beiden Beispielen konnte durch Veränderung einzelner Basen in regulativen Bereichen Unterschiede in der Genexpression erzeugt werden. Da es sich um Variationen in einzelnen Basenpaaren (SNPs) handelt, die langsam und nacheinander ins Genom einfließen, verlangen die hier beobachteten Unterschiede geradezu nach Gradualismus.

Fee hat vor einigen Wochen auf dem Blog Science-meets-spciety ebenfall über das letztere Paper geschrieben und ich möchte einige Fehler in diesem (auch auf Researchblogging erschienenen) Post abschließend korrigieren. Ich hoffe so eine Diskussion anzuregen, falls es im deutschsprachigen Raum genügend Interesse gibt.

S-M-S:
Wir teilen bis zu 98% der codierenden DNA mit unseren nächsten Verwandten, den Schimpansen (Pan troglodytes) und doch unterscheiden wir uns markant von ihnen.

Das stimmt nicht! Eine der grundlegendsten Entdeckungen der letzten Jahre waren Unterschiede in der Kopienzahl einzelner Gene im Menschlichen Genom. 2007 wurde so (Hauptsächlich durch den Vergleich der Genome von Venter und Watson) offensichtlich, dass einzelne Menschen sich in 2-3% ihres Genoms unterscheiden. Der Unterschied zu unseren nächsten interspeziefschen Verwandten dürfe daher mindestens 5% betragen.

S-M-S:
Der größte Teil der DNA in menschlichen Zellen ist nicht kodierend und wurde, als man dies entdeckte, fälschlicherweise als Junk-DNA (Abfall-DNA) verschrien.

Diese Sichtweise ist grundsätzlich falsch! Es wurden seit der Entdeckung nicht-kodierender Bereiche schon versucht Funktionen für diese für eine höhere Organisation zu postulieren. Vergleicht man aber unterschiedliche Organismen (z.B. der Zwiebel oder des Salamanders) mit der des Menschen oder der Kugelfische (Tetraodontidae; anderes Extrem) fällt schnell auf dass eine höhere Komplexität nicht mit der Genomgröße korreliert.
Die in Frage stehenden regulatorischen Elemente machen einen winzigen Teil des Genoms aus.

S-M-S:
Dabei stiessen sie auf einen Abschnitt von 546 Basenpaaren Länge, der sich seit der Entwicklung der Wirbeltiere nur wenig verändert hatte. Jedoch hatten sich in der relativ kurzen Zeit von 6 Millionen Jahren, seit sich die Entwicklungszweige von Mensch und Schimanse trennten, 16 Veränderungen etabliert, die alle in einem Abschnitt von 81 Basenpaaren clusterten. So etwas ist für einen genetischen Detektiv ein eindeutiges Indiz, dass weitere Untersuchungen gewinnbringend sein könnten.

Die Forscher wussten im Gegensatz zum Schreiber dieser Zeilen um die Existenz von Enhancen. Andernfalls hätten sie den entsprechenden Bereich nicht als solchen identifizieren können. In der besprochenen Studie wurden nicht zum ersten Mal Selektion auf einen nicht-kodierenden Bereich nachgewiesen. Ähnliche Fehlinterpretationen und die übertriebene Darstellung von Neuheiten (wissenschaftlichen Revolutionen) in der Wissenschaftsberichterstattung veranlassen auch beispielsweise Kreationisten regelmäßig zu ähnlichen Dummheiten.

S-M-S:
[...]so aktivierten alle die Expression von Genen in den Augen, Ohren und in den embryonalen Kiemenbögen, die später den Kiefer bilden.

Die Expression eines Reportergens! Dies ist im Vergleich zu den anderen Fehlern aber eher zweitrangig.

S-M-S:
Ein neuer Teilbereich der entwicklungsgenetischen Forschung, der bestimmt noch viele Überraschungen und neue Erkenntnisse birg.

Quatsch! "Vergleichende Entwicklungsgenomik" ist zwar ein recht neuer boomender Bereich der Entwicklunsbiologie, erfunden wurde er aber in diesem Paper nicht. Die Studie bestätigt vielmehr experimentell die Validität der zugrundeliegenden in silico Analysen.


Ich hab hier mal die jährliche Zähl an Veröffentlichungen, die "Comparative developmental genomics" im Volltext (Pub-med) erwähnen geplotet:


Dabei fällt auf, dass das erste Paper bereits aus dem Jahre 1988 stammt, als eigentlich noch keine Genome zum Vergleich bereitstanden. Veröffentlichungen vor dem Jahre 2001 können also wahrscheinlich als "Hintergrundrauschen" oder "Vorahnung" interpretiert werden, wirkliche "Comparative genomics" in dem heute etablierten Sinn waren damals noch kaum möglich. Ab diesem Zeitpunkt wurden dann anhand der vorhandenen Daten die betreffenden Methoden entwickelt. Prabhakar et al. haben also zwar eine schöne Studie angefertigt, mitnichten aber das "Teilgebiet" erfunden.

Kommentare/ Kritik erwünscht, ich bin kein Entwicklungsbiologe und habe sicher selbst Fehler gemacht!

________________________________________________________________________________________________________________

C. J. Cretekos, Y. Wang, E. D. Green, J. F. Martin, J. J. Rasweiler, R. R. Behringer (2008). Regulatory divergence modifies limb length between mammals Genes & Development, 22 (2), 141-151 DOI: 10.1101/gad.1620408

S. Prabhakar, A. Visel, J. A. Akiyama, M. Shoukry, K. D. Lewis, A. Holt, I. Plajzer-Frick, H. Morrison, D. R. FitzPatrick, V. Afzal, L. A. Pennacchio, E. M. Rubin, J. P. Noonan (2008). Human-Specific Gain of Function in a Developmental Enhancer Science, 321 (5894), 1346-1350 DOI: 10.1126/science.1159974

Montag, 8. September 2008

Würmer in Paris: Compatibility polymorphism in snail/trematode interactions

ResearchBlogging.orgChristoph Grunau und Emmanuel Roger gaben die für mich beeindruckenste Präsentation der gesamten Konferenz. Sie stellten Ergebnissen aus ihrem Labor in Perpignan zu Untersuchungen an der Interaktion von Biomphalaria glabrata und Schistosoma mansoni vor.

Die Interaktion von Trematoden und Schnecken beruht (nach der aktuellen Hypothese) darauf, dass das sich zur Muttersporocyste entwickelnde Miracidium des Parasiten den Wirt entweder aktiv in seiner Immunantwort beeinflusst, oder aber durch ein Mimikry von Wirtsepitopen vom Immunsystem unerkannt bleibt. Letzteres ist bei B. glabrata und S. mansoni der Fall.

Während bei einer Beeinflussung/Unterdrückung des Immunsystems in anderen Wirt/Parasit-Systemen generell von anfälligen und resistenten Wirten gesprochen werden kann, ist die Interaktion beim Mimikry von Wirtsepitopen komplizierter:

Die selbe Parasiten-Linie ist unterschiedlich kompatibel mit künstlich auf Resistenz oder Anfälligkeit selektierten Schnecken-Linien (Soweit wäre das natürlich auch durch bloße Resistenz der Schnecke erklärbar). Werden aber anderer Schnecken-Linien mit einer anderen Parasiten-Linie selektiert ist die in dieser künstlichen Co-Evolution resistente Schneckenlinie anfällig für die Parasiten-Linie aus der ersten Selektion. Ein schönes Schaubild dazu (Fig.3) kann man sich in diesem Paper anschauen, wenn man Zugriff hat.

Die Versuche der Gruppe zur Identifizierung der molekularen Grundlage dieser Interaktion wurden nun mit einem zu einer brasilianischen Schnecken-Linie kompatiblen Stamm von S. mansoni und einem inkompatiblen Stamm durchgeführt (Zur Vermehrung des inkompatiblen Stamms stand eine andere Schneckenlinie zur Verfügung).

Verwendet wurde ein proteomischer Ansatz (2D Gele) und es konnten sogenannte Schistosoma mansoni polymorphic mucin-like proteins (Sm PoMuc) als Hauptverdächtige identifiziert werden.

Mucine oder Mucin-ähnliche Proteine sind im Schleim (Mucus) vieler Organismen enthalten. Solcher Mucus wird oft von als Reaktion auf eine Infektion produziert, und kann dazu dienen Parasiten zu bekämpfen. Andererseits sekretieren Parasiten aber auch Mucin-ähnliche Moleküle um die Wirtsabwehr zu täuschen.

In Sm PoMucs werden fast ausschließlich in den in der Schnecke parasitierenden Stadien exprimiert. In den Miracidien werden sie in sogenannten Apicaldrüsen produziert und sekretiert. Möglicherweise kann sich der Parasit so in einem küstlichen Nebelschleier verbergen (im Deutschen klingt das schon fast poetisch; anders als das Englische "covered by a smoke screen").

Die Struktur der Sm PoMucs erwies sich als höchst polymorph. Gemeinsam haben alle Transkripte ein Signalpeptid (in Übereinstimmung mit der extrazellulären Lokalisation) gefolgt von einer Region bestehend aus einer variablen Anzahl von (3 leicht unterschiedlichen; r1, r1' und r2) 9-Aminosäuren-Repeats gefolgt von 3 leicht unterschiedlichen C-terminalen Regionen (1, 2, 3).
Eine unterschiedliche Kombination dieser Elemente kennzeichnet drei Gruppen von Sm PoMucs (die erste Gruppe und die zweite Gruppe haben nur r2 und unterschiedliche C-terminale Regionen 1 und 2; die dritte Gruppe hat R1' und R1 gefolgt von der C-terminalen Region 3).
Eine vierte Gruppe wiest eine wahrscheinlich durch alternatives Splicen noch stärker abweichende Sequenz auf.
Im Kompatiblen und inkompatiblen Parasiten-Stamm unterscheidet sich in allen drei Gruppen die Anzahl der Repeats. Codiert werden die drei Gruppen von jewels einem Gen. Die unterschiedliche Anzahl der Repeats entsteht ebenfalls durch alternatives splicen.

Besonders von Bedeutung ist weiterhin, das die Repeats Serin-, Threonin- und Prolin-reich sind, was als Zeichen für eine posttranslationale Glycolsylierung gilt.
So könnten möglicherweise speziell die unterschiedlich angefügten Zucker für die unterschiedlichen Eigenschaften der Moleküle in der Wirts-Parasit-Interaktion verantwortlich sein.

Für mich war der Vortrag deshalb so interessant, da er mir die Beschränkungen der in meinem Projekt verwendeten transkriptomischen Methoden vor Augen geführt hat:
Allein das Assembley der Repeats wäre aus 454-Pyrosequenz-Daten (bei der bisherigen read-Länge von 250 Basen) wahrscheinlich sehr schwierig bis unmöglich. Und selbst mit sehr viel längeren reads bräuchte man eine extrem hohe Coverage der betreffenden Regionen um ein solches Maß an Polymorphismus aufdecken zu können.
Außerdem interessant (und etwas beunruhigend, wenn man die Arbeit mit Proteinen nicht besonders mag) ist die Tatsache, dass ein wesentlicher Teil des Polymorphismus durch posttranslationale Modifikation entstehen kann. Generell neu und überraschend ist das natürlich nicht unbedingt, allerdings könnte es besonders im Co-Evolutions-Context eine gewaltige Rolle spielen.
Gerade in der Interaktion mit mehreren sympatrischen Wirtsarten könnten solche Mechanismen zu einer Evolution von Plastizität führen. Speziell diese Plastizität könnte als Gegenspieler von adaptiven Prozessen sympatrische, ökologische Artbildung von den an unterschiedliche Wirtsorganismen angepassten Parasiten-Stämmen verhindern.
_______________________________________________________________________________________________________________________________________

E ROGER, B GOURBAL, C GRUNAU, R PIERCE, R GALINIER, G MITTA (2008). Expression analysis of highly polymorphic mucin proteins (Sm PoMuc) from the parasite Schistosoma mansoni☆ Molecular and Biochemical Parasitology, 157 (2), 217-227 DOI: 10.1016/j.molbiopara.2007.11.015

Samstag, 6. September 2008

Würmer in Paris: Ist DNA-barcoding unfair?

Ein Großteil der Diskussion nach dem DNA-barcoding Symposium auf dem EMOP hatte anstatt der technischen Schwierigkeiten [1] leider eine andere Grundlage:

3. R. Guerrero stellte die Schwierigkeiten der Forscher aus "Schwellenländern" sich umfangreiche Sequenzierungen finanziell leisten zu können in den Vordergrund:
Dadurch würden gerade in diesen Ländern, in denen die Biodiversität am größten ist keine Fortschritte erzielt, während in den entwickelten Ländern, mit fast vollständig beschriebener Diversität nach kryptischen Arten gesucht wird.
Ganz von der Hand zu weißen sind diese Einwände wahrscheinlich nicht, da selbst wenn Sequenzierungen immer günstiger werden, das Anlegen von großen Datenbanken, die Morphologie (Museumsexemplare, Bilder, Videos), ökologische Parameter (Verbreitung) mit den Sequenzdaten verknüpfen immer noch teuer bleibt.

Andererseits: Kein Doktorrand wird sich dagegen sträuben im Rahmen seiner Dissertation in die Tropen zu reisen um umfangreiche Proben zu nehmen, die dann daheim sequenziert werden. Und auch der durchschnittliche Arbeitsgruppenleiter auf seinem speziellen Gebiet wird (sobald Hochdurchsatzsequenzierung mal wirklich nichts mehr kostet und weit verbreitet ist) den Vorteil und das Prestige erkennen den die Entdeckung hunderter "möglicher Arten" bietet.

[1] Davon gibt es (scheinbar?) genügend: Alleine F1000 listet 3 Paper, die von Problemen berichten (in Fällen, wo die intraspezifische Varianz die interspezifische überlappt) und 3 Paper die Erfolge beschreiben.
Zurzeit gibt es außerdem ein viel diskutiertes Paper über Probleme durch COI-Pseudogene im Kern...
...das ganze ist schwer zu beurteilen und natürlich spielen dabei die persönlichen Arbeitsweisen eine Rolle. Ein deutscher Evolutionsökolge meinte scherzhaft zu einem Kollegen, als ich ihn darauf ansprach dass ich gerne alle Aalparasiten barcoden würde: "Vorsicht, der will uns wegrationalisieren: Dann schmeisst er nur noch alles in nen Mixer und zählt Sequenzen..."

Würmer in Paris: Acoel Flatworms

2. Tim Littlewood brachte den besten Witz während eines Vortrags und schloss gleichzeitig eine Lücke in meinem Wissen über Phylogenie der Protostomier:

Er erwähnte, dass sehr viele lateinische Taxa-bezeichnungen in verschiedenen Sprachen völlig unterschiedlich ausgesprochen würden. So würde "Acoel" schon im deutschen und englischen etwas unterschiedlich ausgesprochen, die Franzosen sprächen es sogar "ashole" aus. Originalzitat: "but dont be a ashole (acoel) try to understand each other"...

Was hat es nun mit diesen (nicht-parasitischen) Würmern auf sich?

Wie man als halbwegs gebildeter Biologie (und erst recht als Zoologe im weitesten Sinne) wissen sollte hat die Phylogenie der Tiere in den letzen zehn Jahren [1] eine Revision erfahren [2]:

Dabei gibt es zwei große Kladen innerhalb der bilateralsymmetrischen Tiere, die Protostomier und die Deuterostomier (zu denen wir Vertebraten gehören).
Die Protostomier enthalten wiederum zwei Kladen: Eine die alle Tiere mit "sich häutenden" (moulting) Larvenstadien (Nematoden, Cheliceraten, etc.) umfasst und Ectysozoa genannt wird und eine zweite die Lophotrochozoa genannt wird.
Der Name Lophotrochozoa ist eine Neuschöpfung aus den Namen der beiden alten Kladen Trochozoa und Lophophorata.

Diese Lophotrochozoa enthalten neben den prominenten Mollusken und Anneliden auch die Platyhelminthen (hauptsächlich Trematoden und Cestoden für die Parasitologen). Dise alte Klade erwies sich aber eben auch als polyphyletisch und die "Acoel Flatworms" mussten ausgegliedert und an eine basale Position [3] als Schwestergruppe der übrigen Bilateria [4] gestellt werden.

Quellen im Text verlinkt!
Wobei ich jeweils zu der genererellen Revision [1+2] und den "Acoel Flatworms" [3+4] DAS klassische und ein neues Paper mit einer phylogenomischen Analyse verlinkt hab. (Phylogenomik bezieht sich hier auf die Analyse mehrerer (vieler) Genen aus großen EST-Datensätzen, nicht auf Jonathan Eisens Definition.)

Würmer in Paris: Orientation within host tissues

Ich fange heute an einen längeren Post über den in meinen Augen interessantesten Vortrag der EMOP zu schreiben, dazu wollen aber (mangels Mitschrieb) noch einige Paper gelesen werden.

Zuächst aber kurze Zusammenfassungen einiger anderer Vorträge und Diskussionen.

1. Wilfried Haas: ORIENTATION WITHIN HOST TISSUES: MECHANISMS OF PARASITE NAVIGATION

Im Labor von Prof. Haas in Erlangen konnte in den letzen Jahren durch in vivo Experimenten eine Wanderung von Trematoden (und mit in geringerem Umfang auch von Nematoden) entlang von chemischen Gradienten demonstriert werden. Alle getesteten Helminthen außer der Nematode Necator americanus wanderten dabei in Agar entlang von Gradienten des Wirtsplasmas. Die Gruppe demonstrierte dann durch eine Auftrennung des Wirtsplasmas und umfangreiche Tests, dass für die untersuchten Trematoden Arginin, Glucose und Mannose anziehend wirken, Glucosamin abstoßend. Der zweite Nematode Ancylostoma duodenale wanderte in Richtung anorganischer Ionen. Diese Ergebnisse machen durchaus evolutionsökologischen Sinn, da die Metacercarien von Trematoden, sobald sie in den Endwirt eingedrungen sind, empfindlich gegenüber Sauerstoff werden, und so sicherstellen müssen, dass sie in tiefere Gewebeschichten vordringen (wo Arginin , Glucose und Mannose vorkommen) und eine erneutes durchstoßen der Wirtshaut (in der Glucosamin vorkommt) vermeiden.
Ich kann hier trotzdem nicht auf die Veröffentlichungen der Gruppe verlinken, da die Ergebnisse der vorherrschenden Meinung widersprechen, dass Parasiten (inkl. Tremtoden) lediglich genetisch programmierten Wanderruten in der Leibeshöhle des Wirtes folgen.
So wurden laut Prof. Haas bisher alle Veröffentlichungen dieser Arbeiten vom wichtigsten Vertreter der vorherrschenden Lehrmeinung Prof. Michael V. K. Sukhdeo geblockt. Die Gründe dafür sind, dass ein in vivo System nicht als Grundlage für die Revision einer solch etablierten Lehrnmeinung anerkannt wird. Die Gruppe um Prof. Haas war die erste Gruppe weltweit der überhaupt die Demonstration des beschriebenen Phänomens gelang, da die Einstellung der Gradienten von sehr geringen Konzentrationen offenbar in sehr vielen Versuchen anderer Gruppen zuvor misslang.

Sonntag, 17. August 2008

The Sunday Nematode

Da die Verbesserung meines Vortrag in den nächsten Tagen Vorrang hat wird der Nematode der der Woche diesmal etwas weniger ausführlich:

Aufmerksam wurde ich auf den Sonntags-Wurm durch diesen Artikel, der ein geographisches und taxonomisches Ungleichgewicht in der Untersuchung eingeschleppter Spezies aufzeigt. Es gibt neben meinem Liebling Anguillicola crassus einen zweiten (nur!) Nematoden der als Alien gesteigerte Aufmerksamkeit der Wissenschaft auf sich gezogen hat:

Bursaphelenchus xylophilus

Dieser Pflanzen- Parasit ist dabei einer der wenigen Invasoren in Asien, der genauer studiert wird. Verschleppt wurde der unscheinbare Nematode nämlich aus den Kiefernwäldern Nord-Amerikas in jene Japans. Mit verheerenden Folgen:
Eine befallene Kiefer (
Japanische Rot-Kiefer (P. densiflora) und Japanische Schwarz-Kiefer (P. thunbergii)) stirbt innerhalb weniger Wochen oder Monate komplett ab.

Für ihre Verbreitung nutzen die Holzwürmer (hier passt der Name wirklich!) Käfer der Gattung Monochamus als Verktor"-Komplizen".
Im Holz eines stark beschädigten Baumes "riechen" die Nematoden Larven (L3) wo eine Käfer-Larve gerade am absterbenden Baum nagt (die Käfer Larven fressen nur abgestorbenes Holz). Die Larven suchen aktiv ihren Komplizen und dringen wenn dieser sich verpuppt in dessen Trachäen ein. Dort bilden sie Dauer-Larven, eine häufig bei Nematoden beobachtete Taktik um besipielsweise nahrungsarme Perioden zu überstehen. Der adulte Käfer schlüpft aus der Puppe und fliegt an einen neuen, noch gesunden Baum, dessen junge Zweige er (anders als seine Larve) von außen annagt. Dieser wieddreum etwas anderen Duft veranlasst die wartenden Larven dazu den Käfer über die Atemöfnungen zu verlassen und über die Fraßwunden in den noch gesunden Baum einzudringen.
Die Auswirkngen des Nematoden auf ganze Wälder können verheerend sein, da er diesen komplexen Lebenmszyklus nicht zwangsläufig durchlaufen muss. Solange der parasitierte Baum noch lebt kann er sich auch direkt weiterentwickeln besitzt eine sehr kurze Generationszeit und kann sich so massenhaft vermehren.

Ein Review in dem auch die wirtschaftlichen Folgen beschrieben werden findet man hier, vorausgesetzt man hat Zugriff...

Nachtrag:
Die Bezeichnung "entomophil" aus dem letzen Nematoden der Woche Post war wohl etwas veraltet: "Entomopathogener Neamtode" sollte das eigentlich heißen, dazu gibts dann auch nen schönen Wikipedia-Artikel.

Mittwoch, 30. Juli 2008

The Wednesday Nematode

Dies ist der erste Teil der hoffentlich recht regelmäßigen Serie, in der ich versuchen will einen Blick auf einzelne Arten der abundantesten Organismengruppe unseres Planeten zu werfen.

Den Anfang macht ein Nematode mit einer monströsen Besonderheit, doch dazu später, zuerst die eher grauen Fakten. Der Fadenwurm der Woche ist:
Sphaerularia bombi
Dabei handelt es sich um einen entomophilen Nematoden, d.h. einen Parasiten von Insekten, genauer von Hummeln (Gattung Bombus). S. bombi gehört zu den Tylenchina, einer Gruppe in der sich hauptsächlich an Pflanzen parasitierende Nematoden tummeln. Tylenchina ist einer Schwestergruppe der Rhabditina (z.b. C. elegans; meist freilebend) und Spirurina (z.b. Brugia malayi; allesamt parasitisch). (NCBI Taxonomie kann man vergessen; hier steht was wirklich Stand der Forschung ist).

Erst 2007 wurde eine zweite Art der Gattung entdeckt, die Sphaerularia vespae getauft wurde und in Vespen parasitiert (ha... gewieft diese Parasiten-Taxonomen).

Und nun zum monströsen Teil:

Eine Hummelkönigin kommt bei ihrer Suche nach einem Erdloch zum Überwintern mit den infektiösen Weibchen (ungewöhnlich: die Adulten sind infektiös) in Kontakt, diese dringen in die Körperhöhle ein. Im Haemocoel des Wirtes entwickelt sich dann der weibliche Wurm zur Gebärmaschiene. Der Uterus stülpt sich aus und bildet einen Schlauch, der den Wurm um ein Vielfaches an Länge und Volumen überragt. Der eigentliche Wurm wird dann sogar abgetrennt und stirbt ab, während der Schlauch über seine Oberfläche Nahrung aufnimmt.


Ja, das kleine Ding ist der eigentliche Organismus. Der Rest ist ein etwas groß geratener Geschlechtsapparat, der die Kontrolle übernommen hat.


"Ein [solcher] Sphaerularia-Schlauch gibt innerhalb von 1–1 1/2 Wochen die Masse seiner Eier in die Wirtsleibeshöhle ab. Nach 4–7 Tagen Embryonalentwicklung schlüpfen die Sphaerularia-Larven. [...] Die Larven verweilen 8–10 Tage in der Leibeshöhle der Hummel und nehmen während dieser Zeit, höchstwahrscheinlich osmotisch über die Körperkutikula, weitere Nahrung auf. Nach dieser Zeit sind die Darmzellen der Larven dicht mit Granula angefüllt, und die Sphaerularien sind nun in der Lage, den Wirt via Darm und After zu verlassen" (G. Madel 1966).

Dies geschieht wenn sich die infizierte Königin nach dem Überwintern im Frühling erfolglos ein Erdloch sucht um ihr Nest anzulegen. Dabei schlüpfen die genannten (L3) Larven (Nematologen sind bei der Namensgebung der Larvenstadien sehr kreativ: L1, L2, L3, L4, Adult) über die Analöffnung ins freie und "warten" in der Erde auf die nächste Hummel, die im Spätjahr zum Überwintern eine Erdhöhle suchen wird. Das "Warten" wird ihnen aber durch zwei Häutungen (L3-L4-Adult) und die Paarung verkürzt...
Für die männlichen Würmer ist es damit schon vorbei die Weibchen leben noch etwas bis ihr Geschlechtsapparat die Sache übernimmt.

Die infizierte Hummel versucht also einige male erfolglos ein Erdloch zu graben, und verteilt dabei die Larven. Ihre eigene Fortpflanzung findet in der Natur also wahrscheinlich nicht statt. Häufig wird von einer Kastration des Wirtes durch S. bombi ausgegangen (die Geschlechtsorgane der Hummel verschwinden), im Labor konnte allerdings schon eine erfolgreiche Eiablage einer Hummelkönigin der Art Bombus hypnorum beobachtet werden.

Fazit: Monströser Kastrator.

Weiteres Fazit: Verdammt, in der Zeit vor den Modellorganismen wurden verdammt coole Tiere erforscht. S. bombi hat dabei auch eine ganz eigene Geschichte: Der Vater der deutschen Parasitologie Rudolf
Leuckart hat sich schon damit beschäftigt, und Entwicklungsbiologie wurde an diesem Tier studiert als C. elegans noch irgend ein frei lebender Nematode war.

Herausragende Quelle:

G. Stein (1956) Weitere Beiträge zur Biologie von Sphaerularia bombi Leon Dufour 1837. Prasitology Research

die anderen Quellen sind verlinkt!


Montag, 23. Juni 2008

Vergleichbarkeit von Orthologen bei Primaten und Nagern

ResearchBlogging.orgSoooooo, es ist also endlich Zeit für meinen ersten Post. Meine recht willkürliche Wahl viel auf ein Paper aus dem Bereich der Genomik. Dem Titel meines Blog werde ich wahrscheinlich erst in einigen Monaten gerecht werden und mehr über Populationsgenetik schreiben...
Ich habe versucht sämtliche Fachausdrücke (außer "Knockout", das war mir dann doch zu blöd) ins Deutsche zu übersetzen, obwohl ich befürchte, dass dies die Verständlichkeit nicht unbedingt verbessert. Aber urteilt selbst!

In den nächsten Jahren wird die verfügbare Sequenzinformation von Nicht-Modellorganismen dank der neuen Generation von Sequenzier-Geräten sprunghaft zunehmen. Um die Flut an Daten, die diese Maschinen produzieren, zu ordnen ist allerdings das Wissen, das über Modelorganismen gewonnen wurde, von entscheidender Bedeutung. Ein sehr wichtiger Schritt der Analyse von Sequenzdaten (über die vorausgehenden Schritte werde ich sicher noch in einigen Posts berichten, wenn ich endlich mal selbst an solchen Daten sitze) ist die Annotation von Genen. Dabei werden sehr unterschiedliche Methoden (über diese auch sicher in anderen Posts mehr) eingesetzt um vorauszusagen, wie die vorliegende Sequenz in ein Protein übersetzt wird: Man muss z.B. bestimmen in welchem Leserahmen übersetzt wird, was trotz teilweise vorhandener Sequenzierfehler möglichst robust geschehen sollte. Findet man orthologe Gene, z. B. aus einem schon komplett sequenzierten Modellorganismus, hat das aber über die simple Annotation hinaus (die sehr erleichtert wird) noch andere Vorteile: Man kann Schlüsse über die Funktion und Wichtigkeit (Wesentlichkeit) des entdeckten Gens aus dem Wissen über das Orthologe im Modellorganismus ziehen.
Für die Wichtigkeit eines Gens ist dessen "Wesentlichkeit" (= direkte Übersetzung des englischen "essentiality") ein eindeutiges Maß. Wesentliche (=essentielle) Gene sind dabei solche, die bei einer Nullmutation die Reproduktion des Trägers ausschließen (= seine Fitness auf 0 reduziert).

Doch wie gut sind Voraussagen anhand von Orthologen über den Effekt von Genen auf die Fitness? Wie schnell und häufig ändern Gene ihre Wesentlichkeit und ihre Funktion?

Um Veränderungen der Wesentlichkeit zu beleuchten analysierten Ben-Yang Liao und Jianzhi Zhang, in einer im März in PNAS veröffentlichten Studie, die Überlebenswichtigkeit von Gene zweier sehr gut erforschter Säugetiere; des Menschen und der Maus. Deren letzter gemeinsamer Vorfahre lebte vor etwa 87 Millionen Jahren (Mya) und beide unterscheiden sich, obwohl wir einige menschliche Merkmale als stark abgeleitet wahrnehmen, in evolutionärem Maßstab nur marginal.
Die Studie nutz die Vorteile des riesigen Wissens über beide Organismen um 120 Gene zu identifizieren, die beim Menschen durch eine Nullmutation Krankheiten verursachen, die vor Erreichen der Fortpflanzungsfähigkeit zu Tod führen, oder unfruchtbar machen, und für die ein Phänotyp beim Knock-out in der Maus beobachtet wurde.

Für 27 der 120 identifizierten Gene ist überraschenderweise der Phänotyp beim Maus-Knockout nicht mit einem Totalverlust der Fitness verbunden.
Übernehmen Paraloge in der Maus die Funktion des entsprechenden Gens? Bei den identifizierten Genen handelt es sich um eins-zu-eins Orthologe, Genduplikation in einer der beiden zur Maus oder zum Menschen führenden Linien ist also ausgeschlossen. Die Funktion des entsprechenden Gens könnte aber von einem Paralogen übernommen werden, das schon im gemeinsamen Vorfahren vorhanden war. Um dies zu testen verglichen die beiden Forscher (1.) die Gruppe der Gene die für Mensch und Maus wesentlich sind mit (2.) der Gruppe von Genen, die nur für den Menschen, nicht für die Maus essentiell sind: Der Anteil der Gene mit Paralogen und die durchschnittliche Ähnlichkeit mit dem nächsten Paralogen unterscheiden sich in beiden Gruppen nicht. Zusammen mit früheren Studien der selben Autoren, die generell das Vorkommen einer Kompensation der Genfunktion durch Paraloge in Säugetieren selten und unwahrscheinlich erscheinen lassen, kann man Kompensation durch Paraloge also im vorliegenden Fall nahezu ausschließen.

Weiter fanden Liao und Zhang eine verstärkte Selektion auf eine Veränderung der Proteinsequenz (zwischen Maus und Mensch) in der zweiten Gruppe verglichen mit der ersten: Sie verglichen die Anzahl der synonymen und nichtsynonymen ausgetauschten Basen (= synonyme und nichtsynonyme Distanz; dS und dN) in diesen Gruppen und einer weiteren (3.) Gruppe von Genen, die für die Maus nicht wesentlich sind, ungeachtet dessen, ob sie für den Menschen essentiell sind.
Die nichtsynonyme Distanz ist für die 2. Gruppe größer als für die erste, während die synonyme Distanz gleich ist. Die Proteinsequenz ist also bei den Genen mit veränderter Wesentlichkeit unterschiedlicher als bei Genen die gleich essentiell sind.
Dies könnte zwei Ursachen haben: Positive Selektion auf eine veränderte Funktion, oder eine schwächere negative Selektion durch die veränderte Wesentlichkeit. Um zwischen diesen beiden Möglichkeiten (bei denen jeweils Ursache und Wirkung vertauscht sind) zu unterscheiden verglichen die Forscher die nichtsynonyme Distanz der 2. mit der 3. Gruppe (die die zweite Gruppe, plus für Maus und Menschen nicht essentielle Gene enthält): Dass die Distanz zwischen der zweiten Gruppen nicht kleiner sondern größer ist als zwischen der dritten Gruppe interpretierten sie als Indiz dafür, dass man nicht von einer abgeschwächten negativen Selektion auf die 2. Gruppe ausgehen kann (diese musste in der dritten Gruppe noch schwächer sein).
Verringerte negative Selektion auf nicht essentielle Gene als Grund für den Unterschied zwischen dN(1.) und dN(2.) ist also unwahrscheinlich.

Weiter konnten die Autoren Orthologe der Gene der zweiten Gruppe aus zwei vollständig sequenzierten Primatenarten (Schimpanse und Makake) und einer weiteren Nagerart, der Ratte zur Analyse heranziehen. Sie nutzen dazu eine Methode um positive Selektion aufzuspüren: Sie verglichen das Verhältnis von nichtsynonymen zu synonymen Distanzen (dN/dS) für die 27 Gene entlang des phylogenetischen Baums. Die meisten (17) Gene hatten dabei das höchste dN/dS-Verhältnis zwischen den Primatenarten. Die meisten nichtsynonymen Polymorphismen sind also erst in den Hominidae (Menschenaffen) entstanden.Zu dN/dS-Verhältnissen wird es hier sicher noch einige Posts geben, doch was macht außerdem die Ergebnisse diese Papers nun so interessant?

Zum einen gibt es für medizinisch motivierte Studien an Mausmodellen Zweifel an der Übertragbarkeit der Ergebnisse. Ein großer Teil der Proteine der Gene der 2. Gruppe ist in der Vakuole lokalisiert und wurden möglicherweise durch die Evolution einer längeren Lebenszeit der Menschenaffen speziell in Neuronen essentiell. Besonders für neurologische Krankheiten könnten Nager also suboptimale Modelle sein.

In anderen Organismen könnten möglicherweise Voraussagen über die Wichtigkeit eines Gens nur sehr eingeschränkt möglich sein. Dies ist natürlich besonders bedauerlich, wenn man mit einem Organismus arbeitet, dessen letzter gemeinsamer Vorfahre mit einem Modellorganismus (= Verfügbarkeit von Knockout-Phänotypen) vor etwa 400 Mya gelebt hat. Mich würde natürlich in diesem Zusammenhang interessieren, wie oft z.B. bei C. elegans und C. briggsae (100 Mya) unterschiedliche Knockout-Phänotypen beobachtet werden.

Ich hab eben bemerkt, dass auf Nimravid’s Weblog das Paper schon dikutiert wurde.

________________________________________________________________________________________________________________

B.-Y. Liao, J. Zhang (2008). Null mutations in human and mouse orthologs frequently result in different phenotypes Proceedings of the National Academy of Sciences, 105 (19), 6987-6992 DOI: 10.1073/pnas.0800387105